
NATURAL LANGUAGE PROCESSING FOR LEXICAL
CORPUS ANALYSIS

A Dissertation Presented

by

ABRAM HANDLER

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2021

College of Information and Computer Sciences

© Copyright by Abram Handler 2021

All Rights Reserved

NATURAL LANGUAGE PROCESSING FOR LEXICAL
CORPUS ANALYSIS

A Dissertation Presented

by

ABRAM HANDLER

Approved as to style and content by:

Brendan O’Connor, Chair

Brian Dillon, Member

Mohit Iyyer, Member

Narges Mahyar, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

ACKNOWLEDGMENTS

Thanks to Steve Myers, Joe Foxhood and especially Vassil Roussev for helping me

understand that I was actually a computer scientist. Thanks to Katherine A. Keith

and Su Lin Blodgett, who have been thoughtful, creative, and encouraging labmates

throughout my time as a Ph.D. student. Thanks to my friend Javier Burroni for

extensive mathematical help and advice over many years. Thanks to Joe Susnick and

Sam Handler for practical coding guidance and real-world perspective on computing

research. Thanks to Nick Eubank and Oren Ziv for helping guide me through the

academic world; and thanks also to Nick for telling me to get a dog. Thanks to current

and former University of Massachusetts graduate students and NLP reading group

members for years of helpful suggestions and discussions, especially Nader Akoury,

Haw-Shiuan Chang, Andrew Drozdov, Jeffrey Flanigan, John Foley, Neha Nayak

Kennard, Kalpesh Krishna, Mahmood Jasim, Nicholas Monath, Sheshera Mysore,

Emma Strubell, Pat Verga and Tu Vu. Thanks to my advisor Brendan O’Connor

for many years of support and guidance. Finally, thanks to my friends, family and

partner Eliana Bronstein for helping me undertake so many years of dedicated study.

iv

ABSTRACT

NATURAL LANGUAGE PROCESSING FOR LEXICAL
CORPUS ANALYSIS

SEPTEMBER 2021

ABRAM HANDLER

B.A., COLUMBIA UNIVERSITY

M.S., UNIVERSITY OF NEW ORLEANS

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Brendan O’Connor

People have been analyzing documents by reading keywords in context for cen-

turies. Traditional approaches like paper concordances or digital keyword-in-context

viewers display all occurrences of a single word from a corpus vocabulary amid imme-

diately surrounding tokens or characters, to show readers how individual lexical items

are used in bodies of text. We propose that these common tools are one particular

application of a more general approach to analyzing documents, which we define as

lexical corpus analysis. We then propose new natural language processing techniques

for lexically-focused corpus investigation, and demonstrate how such methods can be

used to create new user-facing tools for analyzing corpora.

Our contributions are divided into three parts. In Part I, we consider how to

represent a corpus lexicon to best reflect human mental and linguistic models of

v

a domain, and propose a natural language processing (NLP) method for enriching

a unigram corpus vocabulary with multiword phases. In Part II, we consider how

lexical systems might show query terms in context to best satisfy user search need,

and offer several new techniques focused on summarizing mentions of a query term in

context. Finally, in Part III, we apply our proposed NLP methods towards new user-

facing systems for lexical corpus analysis, and present user studies with journalists

and historians which investigate how new lexical tools can help such users in their

work.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES .xiii

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 The concordance . 1

1.1.1 Uses of the concordance . 3

1.2 Introducing lexical corpus analysis . 5

1.2.1 Exploratory and query-focused lexical corpus analysis 7

1.3 Research questions in lexical corpus analysis . 9

1.3.1 How to represent the lexicon (Part I) . 10
1.3.2 How to show lexical items in context (Part II) 12
1.3.3 How to design lexical systems for users (Part III) 16

1.4 Related work . 17
1.5 Evaluation criteria . 20
1.6 Summary of contributions and results . 22

1.6.1 Exploratory contributions . 23
1.6.2 Query-focused contributions . 24

vii

PART I: HOW TO REPRESENT THE LEXICON

2. NOUN PHRASE EXTRACTION . 27

2.1 Introduction . 28
2.2 Background: Baseline extraction methods . 29

2.2.1 n-gram methods . 29
2.2.2 Parsing methods . 30
2.2.3 Shallow parsing methods . 30

2.3 Our proposed NPFST method . 32

2.3.1 FullNP Grammar . 32
2.3.2 RewriteFST Matching Strategy . 33

2.4 Evaluation of NPFST compared to baselines . 34

2.4.1 Yield and Recall . 34
2.4.2 Computational efficiency . 37
2.4.3 Interpretability . 38

2.5 Conclusion . 40
2.6 Appendix . 41

2.6.1 FullNP Grammar . 41

PART II: HOW TO SHOW LEXICAL ITEMS IN
CONTEXT

3. RELATIONSHIP SUMMARIZATION . 43

3.1 Introduction . 44
3.2 Defining relationship summarization. 46

3.2.1 Tasks: candidate set generation and summary construction 48

3.3 Related work . 49
3.4 An approach to the candidate set generation task . 50

3.4.1 Candidate generation using headline-based supervision 51
3.4.2 Evaluating headline-based candidate set generation 54

viii

3.4.3 Creating a corpus . 54
3.4.4 A yield evaluation . 55
3.4.5 An evaluation with human acceptability judgments 56

3.5 An approach to the summary construction task . 58

3.5.1 Introducing ConceptMap browsers . 58
3.5.2 Annotated summary construction for ConceptMaps 59
3.5.3 Annotation: Additional details . 61
3.5.4 Modeling annotated data . 62
3.5.5 Model evaluation . 63

3.6 A discussion and analysis of the summary construction task 64
3.7 Conclusion . 68

4. TEXT SIMPLIFICATION (CLAUSE DELETION) 69

4.1 Introduction . 70
4.2 Related work . 70
4.3 Compression via subtree deletion . 72
4.4 Human acceptability judgements for sentence compression 73

4.4.1 Methodology: measuring well-formedness . 74
4.4.2 Data collection prompt . 74
4.4.3 Dataset details . 75
4.4.4 Measuring inter-annotator agreement . 76

4.5 Intrinsic task: Modeling single operation compressions 77

4.5.1 Model features . 78
4.5.2 Model evaluation . 79

4.6 Extrinsic task: Modeling multi-operation compressions 81

4.6.1 Defining multi-operation acceptability scores 82
4.6.2 Evaluating multi-operation acceptability scores 83
4.6.3 Exploring many compressions of one sentence 85

4.7 Conclusion and future work . 86
4.8 Appendix . 86

4.8.1 Crowdsourcing details . 86
4.8.2 Per-dependency deletion endorsements . 88
4.8.3 Experimental details . 89

5. TEXT SIMPLIFICATION (VERTEX ADDITION) 91

ix

5.1 Introduction . 92
5.2 Related work . 93
5.3 Compression via vertex addition . 94

5.3.1 Formal description . 94

5.4 Evaluation . 96

5.4.1 Constrained compression experiment . 96
5.4.2 Models . 97
5.4.3 Metrics: F1, Latency and SLOR. 99
5.4.4 Comparisons: Ablated & Random . 99

5.5 Future work: Vertex Addition in practice . 100
5.6 Conclusion . 102
5.7 Appendix . 102

5.7.1 Neural network tuning and optimization . 102
5.7.2 Reimplementation of Filippova and Altun 103
5.7.3 Implementation of SLOR . 104
5.7.4 Latency evaluation . 105
5.7.5 Compression ratios . 105

PART III: HOW TO DESIGN LEXICAL SYSTEMS FOR
SPECIFIC USER GROUPS

6. ROOKIE . 108

6.1 Introduction . 109
6.2 The Rookie system . 110

6.2.1 Linked views in the Rookie system . 113
6.2.2 Lexical view: Subjects Summary . 114
6.2.3 Text view: Snippet Summary . 115
6.2.4 Temporal view: Interactive time series . 116

6.3 Evaluation . 117

6.3.1 In-person group evaluation . 119
6.3.2 Task completion evaluation . 120

6.4 Discussion . 125

6.4.1 Practical systems should handle NLP failures with grace 125

x

6.4.2 Text visualization should allow drill down to actual words 126
6.4.3 NPs, not entities (or topics) . 127
6.4.4 Speed, correctness and interpretability are not optional 129

6.5 Conclusion and future work . 130

7. CLIOQUERY . 131

7.1 Introduction . 131
7.2 Related work . 137

7.2.1 Overview design patterns . 139
7.2.2 Search design patterns . 143

7.3 Current practices, user needs and design requirements 146

7.3.1 Observing and analyzing user needs . 146
7.3.2 Needfinding results and design requirements 148

7.4 System . 154

7.4.1 High-level system description . 155
7.4.2 Overview first: a Time Series View (R1) . 156
7.4.3 A Document Feed for comprehensive search (R2) 156
7.4.4 A linked Document Viewer for necessary context (R3, R4) 159
7.4.5 Color-coded history tracking for systematic review (R2) 159
7.4.6 Filter instead of rank, to avoid confounds (R4) 160
7.4.7 Sentence simplification to help summarize a query 162

7.5 Expert interview study procedure . 169

7.5.1 Recruitment, participants and corpora . 169
7.5.2 Data collection . 170
7.5.3 Thematic coding . 171

7.6 Expert interview study results . 172

7.6.1 ClioQuery helps with historical sensemaking 172
7.6.2 ClioQuery offers overviews and context . 173
7.6.3 Comprehensive review has high costs . 175
7.6.4 Context is crucial, so some are wary of summarization 176
7.6.5 Tradeoffs between neutral review and limited time 177
7.6.6 Access, integrity and integration in current practices 178

7.7 Field study . 178

7.7.1 Procedure . 179

xi

7.7.2 ClioQuery helps experts investigate by skimming 180

7.8 Discussion . 182

7.8.1 New features and directions for text analysis 182
7.8.2 User feedback on summarization has implications for NLP 183
7.8.3 Supporting comprehensive and unbiased analysis 184

7.9 Limitations and future work . 186
7.10 Conclusion . 186

PART IV: CONCLUSION

8. CONCLUSION, LIMITATIONS AND FUTURE WORK 189

8.1 Future work towards representing the lexicon . 190
8.2 Future work towards showing lexical items in context 193
8.3 Future work towards user-facing lexical systems . 198

8.3.1 Needfinding from text at scale . 198
8.3.2 A hypothetical case study in needfinding from text 202

8.4 Final remarks: conclusions from user-facing NLP 204

BIBLIOGRAPHY . 207

xii

LIST OF TABLES

Table Page

1.1 An overview of this work . 9

1.2 Three interfaces for lexical corpus analysis . 17

2.1 Properties of the RewriteFST matching strategy . 34

2.2 Timing results for phrase extraction methods . 37

2.3 Lists of representative terms by extraction strategy 38

3.1 Examples of acceptable and unacceptable extractions 48

3.2 Training data for identifying relation statements . 51

3.3 Highest and lowest well-formedness predictions for one mention set 52

3.4 Test accuracy in predicting well-formed candidate extractions 53

3.5 Candidate set generation methods by yield and well-formedness 57

3.6 An example annotated candidate set . 60

3.7 Comparing two models to inter-annotator agreement 63

4.1 Examples of multiple possible shortenings of a single sentence 72

4.2 Acceptability dataset statistics . 76

4.3 Test results for six models on the single-prune dataset 80

4.4 ROC AUC for several multi-operation Acceptability functions 84

4.5 A gold compression and two alternate compressions of a single
sentence . 85

xiii

5.1 Properties of sentence compression methods . 94

5.2 Test results for constrained compression: F1, Latency and SLOR. 100

5.3 Hyperparameters for vertex additionNN . 103

5.4 Mean compression ratios (test time) for all techniques 106

7.1 A summary of three separate user studies with expert historians and
archivists . 135

7.2 Examples of baseline keyword document search systems 144

7.3 A selection from prior work in library science and information
science . 147

7.4 Interviewees in the needfinding study . 148

7.5 A quantitative view of how ClioQuery eases reading burden 158

7.6 Participants in the interview study . 170

7.7 Historians in the field study . 179

xiv

LIST OF FIGURES

Figure Page

1.1 Uses of concordances across centuries and domains . 2

1.2 Concordances help users gain three perspectives on a large corpus. 4

1.3 A standard concordance line and a line from a possible alternative
tool . 8

1.4 Two choices for showing a lexical item in context . 16

1.5 Several possible tools for lexical corpus analysis . 18

2.2 Recall vs. yield for all methods . 36

3.1 An example interface using relationship summarization 44

3.2 An overview of relationship summarization . 46

3.3 Example hand-crafted summaries of mention sets . 66

4.1 Binary judgements and graded (Likert) judgements for a
slightly-awkward sentence . 75

4.2 Prompt to collect human acceptability judgements 76

4.3 Five hundred and fifty-four possible compressions of a single
sentence . 86

5.1 A sample user interface using sentence compression 93

5.2 A dependency parse of a sentence, shown across five timesteps of
vertex addition. 95

5.3 Density plot of log transformed latencies for Vertex AdditionLR

and ilp . 100

xv

6.1 The Rookie interface . 109

6.2 A user searches for Q =“Bashar al-Assad” in Rookie 111

6.6 The Snippet Summary panel updates in less than half a second 117

6.7 A traditional search user interface . 118

7.1 The ClioQuery interface . 132

7.2 A workflow with ClioQuery and a keyword document
search tool . 138

7.3 Five major user interface design patterns from prior work 142

7.4 An early prototype of ClioQuery . 150

7.5 Another early prototype of ClioQuery . 153

7.6 Text simplification in ClioQuery’s Document Feed 158

7.7 Sentence simplification via query-focused clause deletion 165

7.8 Sentence simplification via relationship span extraction 167

8.1 A user performs binary classification to identify feature requests 202

8.2 A user employs NLP methods to identify design gaps in current note
taking applications. 203

xvi

CHAPTER 1

INTRODUCTION

1.1 The concordance

In the first half of the thirteenth century, Dominican monks at the Saint-Jacques

monastery in Paris compiled the first concordance of the Christian Bible, a resource

listing each occurrence of some 10,000 word types within the Latin text. Working from

notes and drafts in the different handwriting of different men from the monastery,

Rouse and Rouse [289] describe how individual monks likely copied the locations of

words within the corpus onto folded sheets devoted to specific portions of the alphabet

(e.g. a single monk likely composed one leaflet devoted to words from stabile to struc-

tor) and then organized the hand-written sheets into small volumes for distribution.

In medieval Europe, priests and scholars used these and other similar references to

compose sermons, impose uniform doctrine, and inform theological debates [289, 31].1

Much like such early religious resources, contemporary printed and digital concor-

dances (also called Keyword-in-Context indexes [208] or KWIC viewers) help users

analyze document collections which are too large to read, by showing keywords amid

immediately surrounding text (Figure 1.1). Over the past two centuries, people have

used concordances to analyze corpora in diverse fields like history [356], sociology

1The first Saint Jacques concordance indexed the locations of each word in the text, without
showing use in context. Soon after, Dominican monks in England compiled a similar volume showing
a full sentence of context for each occurrence of a word type [289]. Hugh of St. Cher, an administrator
at Saint-Jacques, is sometimes described as either the single author [172, 157] or overseer [199] of
the first concordance; authoritative work from Rouse and Rouse reports that there is little evidence
for these claims. Even earlier religious texts also list occurrences of word types within biblical text,
in alphabetical order [91].

1

(a) An 18th-century concordance, showing occurrences of the word “punishment” (abbrevi-
ated as p) in the Christian Bible. “Hereby many important things may be observed at one
view,” the author writes [78], “without the trouble of turning over several volumes.”

(b) The Ahrefs Content Explorer, a 21st-century faceted, web-scale concordance for online
marketing. “We can use Context Explorer to find relevant guest blogging opportunities,”
explains a tutorial [1]. “Because these blogs are mentioning your target keyword ... [among
other criteria], they are clearly publishing content that is relevant to your niche.”

(c) A 20th-century printed concordance of the works of William Butler Yeats [267]. "Con-
sider the advantages of cataloging the ... birds that beat ... through Yeats’s poems,” one
scholar writes. “I count, for a beginning, some 8 hawks, 21 owls, 6 bats..."

(d) A concordance of British newspapers, used to analyze media descriptions of refugees [17].
“In line 7 they are ‘fleeing’,” one author writes, before going on to describe other similar
concordance lines. “This pattern suggests that refugees are often described in terms of their
movement.”

(e) The KWIC view feature in Lexis Advance [72], a contemporary commercial concordance
used for legal research. A tutorial explains [197] that the KWIC view feature “allows you to
determine the context of the search terms, and whether or not the document is pertinent."

Figure 1.1: Uses of concordances across centuries and domains. This work proposes
generalizations of this enduring and widely-used text analysis technique.

2

[280, 110], classics [301, 346], politics [234, 222], forensics [75], literary scholarship

(Figure 1.1c), media analysis (Figure 1.1d), marketing (Figure 1.1b) and law (Figure

1.1e). Concordances are also particularly important to lexicography [183], because

uses of a word in context give information about the word’s meanings and grammati-

cal roles in a corpus.2 At the time of writing (January 2021), one popular concordance

tool [196] has been cited over 1,200 times on Google scholar.

1.1.1 Uses of the concordance

We propose that concordances are useful because they offer multiple perspectives

into the contents of a corpus that is too large to read (Figure 1.2). Most obviously,

concordances show mentions of some query keyword within the context of immediately

surrounding tokens or characters. By reading mentions of the keyword in context (e.g.

Figure 1.2b), a reader can quickly gain a sense of a keyword’s use across a corpus.

We thus say that concordances offer a token-level perspective on a corpus, as they

show keywords amid immediately surrounding token spans from text. For instance,

Hammo et al. [137] review keywords in context to study changes in the meaning

of words across time and Zinn [356] similarly reviews keywords in context to study

institutional shifts in the United Kingdom. In the literature from corpus linguistics,

reviewing token spans showing some query keyword in context is sometimes described

as reading the “lines” of a concordance [230].

However, because concordances index the locations of each word type in a text,

concordances can also help people quickly review (and sometimes count) the concepts

or topics in a corpus. For instance, Parrish [267] uses a printed concordance to

2Some theories of semantics propose that the meaning of a lexical item is determined by the dis-
tribution of co-occurring words [146, 111]. From this perspective, reading some co-occurring words
in context is an informal sample of the true co-occurrence distribution, which defines a word’s seman-
tics. Writing from the corpus linguistics tradition, McEnery and Hardie [231] describe the process
of identifying and building linguistic intuition using concordances as “collocation-via-concordance,”
a complement to more formal statistical techniques.

3

Subjects: Milosevic, NATO, peace, Bosnia, Serbia, troops, Clinton

(a) Concordances offer a type-level perspective on a corpus. By reviewing (and sometimes
counting) word types in the concordance index, the user may gain an overview of the subjects
in a body of text. This figure shows a list of subjects which occur frequently in a mock corpus
focused on Balkan wars of the 1990s, which might be identified using a concordance index.

… opened an assault on Serbia with cruise missiles and bombs …

 … continues to unravel, and Serbia has lost its fourth war in nine …

… the peace plan signed by Serbia, Croatia and the federal army …

(b) Concordances offer a token-level perspective on a corpus, by showing token spans men-
tioning a keyword in documents. In this figure, the term “Serbia” is shown in token spans
that fit within 150 pixels of screen space (respecting word breaks).

NATO forces, in the wake of failed peace talks, opened an assault on Serbia
with cruise missiles and bombs as President Clinton denounced President
Slobodan Milosevic of Yugoslavia for feeding the ''flames of ethnic and religious
division'' in Kosovo and endangering neighboring countries …

NATO Hits Serbian Targets
New York Times, Mar. 25, 1999

(c) Concordances offer a document-level perspective on a corpus, by guiding users to under-
lying text. In this case, the figure shows the start of a full document mentioning “Serbia”.

Figure 1.2: Concordances help users gain three perspectives on a large corpus.

manually count references to birds and animal types in the works of Yeats (Figure

1.1c), and García-Marrugo [119] uses an electronic concordance to count references

to military actors (e.g. “guerrillas” vs. “paramilitaries”) in Colombian newspapers.3

Thus we say that concordances also offer a type-level perspective into a corpus. This

use of a concordance may be interpreted as a form of exploratory data analysis [328],

as it helps a user gain an overview of unfamiliar documents.

3Some work seemingly unrelated to concordance tools uses word importance scores to rank word
types a corpus lexicon [262, 241]. If we interpret concordances as a data structure mapping word
types to their locations in a corpus, much like the traditional inverted index described in Manning
et al. [216], we can use a concordance to compute many traditional word importance scores, which are
often based on statistics about the frequencies of words in context (e.g. pointwise mutual information,
as in O’Connor [262]).

4

Finally, many traditional printed or hand-written concordances include references

to underlying documents. For instance, early Dominican concordances pointed users

to the locations of words within the Christian bible, and some electronic KWIC

viewers (e.g. Figure 1.1e) allow users to click to access underlying sources.4 Therefore,

we say that concordances also offer a document-level perspective of a corpus, by helping

users navigate to underlying source text.

Overall, it is possible to interpret the type-level perspective, token-level perspec-

tive and document-level perspective as offering a unified and lexically-oriented view of

a corpus, with varying levels of context. In the type-level perspective, word types from

the lexicon are presented or analyzed without surrounding context. In the token-level

perspective, some occurrences of some query word from the lexicon are shown within

the context of immediately surrounding tokens. Finally in the document-level perspec-

tive, words within the lexicon are shown within the context of an entire document.

1.2 Introducing lexical corpus analysis

Concordances have many clear advantages as tools for helping people form and

answer questions5 from large repositories of unlabeled digital text:

• Concordances do not require domain-specific annotation and are not beholden to

any given linguistic formalism (e.g. abstract meaning representation [24]). Con-

cordances thus work reliably, without supervision, across heterogeneous text.

Many NLP tools do not enjoy this advantage (see, for instance, work from

Bamman [22]).

4In information retrieval (IR), search engines are said to offer query-biased snippets [325], single-
document summaries shown on a search engine results page (SERP). Such summaries are designed
to help users decide if they should navigate to a query-responsive document. Concordances lines can
be seen as a particular kind of query-biased snippet, which always show keywords amid immediately
surrounding text.

5In the HCI literature, this process is sometimes described as “sensemaking” [277].

5

• Concordances are simple and transparent; meaning the user can easily and

accurately understand how a concordance organizes documents, without having

to learn a new way to think about textual data (e.g. learning to interpret t-SNE

plots [333]).6

• Concordances run quickly. Decades of research in information retrieval (IR)

offers time and space efficient techniques for indexing the locations of words

in documents (see Manning et al. [216]). Concordances can apply this work

towards scalable, low-latency, interactive data analysis. Slow interfaces are

known to hinder a user’s work [205].

• Concordances help people simplify corpora by breaking documents into cate-

gories or groups (e.g. all documents containing the word “falcon”, Figure 1.1c),

without requiring the labor-intensive work of constructing an ontology (which

may be brittle or incomplete [329]).

• Because concordances do not attempt statistical inference about unstructured

text, the tools run reliably without inevitable mistakes from probabilistic natu-

ral language processing, which introduces tricky design challenges (see Amershi

et al. [10]).7

Inspired by such advantages and noting the broad and long-lasting uses of tradi-

tional concordance tools, this work proposes a wider study of lexically-focused corpus

investigation. We argue that modern natural language processing (NLP) Thesis

methods can be used to create new, digital tools for analyzing text through

6See Doshi-Velez and Kim [90] for a broader discussion of transparency in machine learning.

7Some of these admirable properties can be described in terms of Nielsen’s well-known usability
heuristics [256], which emphasize the need for control, consistency and error prevention in user
interfaces. For instance, concordances can be said to favor recognition over recall (a Nielsen heuristic)
because the user does not have to learn a new mental model of text (e.g. topics, from LDA [38]) to
use a concordance.

6

(1) reviewing a corpus lexicon and (2) examining items from that lexicon

in context. We describe this process as lexical corpus analysis.

A tool for lexical corpus analysis both defines a corpus lexicon and shows items

from the lexicon amid surrounding text. By this definition, traditional hand-written,

printed or electronic concordances are one possible tool for lexical corpus analysis,

showing single words from a unigram lexicon amid some number of immediately

surrounding words, characters or pixels of context.8 However, other ways of extracting

and presenting lexical items in context may be better suited to different users in

different circumstances. For instance, a user studying conflict mediation might need

to review mentions of multiword units, which express key subjects from the domain

(e.g. “peace treaty”). But such units would not be indexed in a traditional 1-gram

concordance. Similarly, a historian studying media depictions of a female astronaut

will want to review descriptions of the astronaut’s appearance in news stories (Chapter

7). But such descriptions may not fall within the immediately surrounding context

shown in a traditional KWIC viewer (Figure 1.3). Thus while concordances are

powerful tools, this work proposes that other lexically-oriented systems may better

serve specific groups of users with particular information needs.

1.2.1 Exploratory and query-focused lexical corpus analysis

In this user-centered investigation, we distinguish between two particular kinds

of lexical corpus analysis, which reflect different user goals and objectives.9 In ex-

ploratory lexical corpus analysis, the user will seek to gain “insights, understand-

ing, and surprises” [45] by reviewing a type-level perspective on a corpus. For instance,

8Different implementations of concordances define the context using different units [286, 207, 262].

9This distinction is inspired by Tukey’s division between exploratory and confirmatory statistics
[328]. We consider query-focused analysis to be more confirmatory than exploratory, because the
user begins with a query which expresses their question. However, this thesis does not consider
methods for confirming or rejecting formal quantitative hypotheses about text.

7

 of those people.'" Like most astronauts, Dr. Ride works long hours that curtail time for other

Dr. Ride works long hours ... The dark-haired, slender-framed woman ... is a longtime athlete.

A

B

...
She opened up the Stanford newspaper one day and found confronting her an
announcement that the National Aeronautics and Space Administration was accepting
astronaut applications. The announcement included a long list of qualifications. ''I looked at
the list of credentials,'' she recalled, ''and said, 'I'm one of those people.' ''

Like most astronauts, Dr. Ride works long hours that curtail time for other activities. The dark-
haired, slender-framed woman, who will turn 31 on May 26, is a longtime athlete, however.
She was once a nationally ranked tennis player who competed on the junior tournament
circuit from about age 14 to 21. At Stanford she played women's rugby. She's given up tennis
now, but runs four to five miles a day.

Feminism paved astronaut's way
May 2, 1982

C

Figure 1.3: A standard concordance line (A), and a line from an alternative tool
(B), each showing a mention of Sally Ride from a news article (C). Both A and B
are roughly the same length. But B includes descriptions of Ride’s attributes (e.g.
“slender-framed”), and thus would be more helpful for a historian studying media
descriptions of the astronaut. This example comes from Chapter 7.

Chapter 6 describes a system which helps journalists explore important subjects in

a corpus, by reviewing unusually frequent word types from particular time periods.10

Note that in exploratory lexical corpus analysis, the user may not yet have a fully-

formed research question.

In query-focused lexical corpus analysis, the user already has a hypothesis

or research question, which they can express with a query (drawn from the corpus

lexicon). The user investigates by reviewing a token-level perspective on a collection

of documents, which shows mentions of the lexical query in context. For instance,

in Chapter 7, we document how a tool built around showing lexical items in context

helps historians investigate questions in archives. The term query-focused lexical

analysis is inspired by the term query-focused summarization, in which a system

10It is possible to interpret reviewing such word types as roughly similar to reviewing quantitative
or graphical summaries to explore structured data [328], or reviewing corpus contents in a specialized
interface during exploratory search [219]. Other prior work on user-facing text analysis (e.g. Termite
[63] or TIARA [203]) also focuses on word types while helping users explore a body of text.

8

must construct a textual summary based on user’s query (see Nenkova and McKeown

[247], and Section 1.3.2).

Although we distinguish between the exploratory and query-focused use cases,

these two approaches are closely intertwined. For instance, in Chapter 6, we present

a system which supports both exploratory and query-focused lexical analysis, using

a unified interface. The system first shows frequent lexical items to encourage ex-

ploration, and then allows the user to query for individual lexical items in context.

Together, borrowing terminology from HCI [277], these exploratory and query-focused

phases of investigation can be described as a kind of sensemaking process.

Part I: How to represent the lexicon
Chapter 2. Phrase extraction (NPFST)

Part II: How to show lexical items in context
Chapter 3. Relationship summarization
Chapter 4. Text simplification (clause deletion)
Chapter 5. Text simplification (vertex addition)

Part III: How to design lexical systems for specific user groups
Chapter 6. Rookie
Chapter 7. ClioQuery

Table 1.1: Lexical corpus analysis is based on defining a corpus lexicon and showing
items from the lexicon in context. In Part I of this work, we focus on how to represent
the corpus lexicon, and in Part II we focus on how to show items from the lexicon in
context. In Part III we apply NLP methods from Part I and Part II in user-facing
tools, which examine how to design lexical systems for specific user groups. Section
1.3 describes each part of this work in greater detail.

1.3 Research questions in lexical corpus analysis

In the next three subsections, we review what we assert to be the three major

research questions in lexical corpus analysis: how lexical systems might represent the

corpus lexicon to reflect user mental models of a domain, how to show lexical items in

context based on user search need, and how to design lexical systems for specific user

9

groups. In presenting each question, we also briefly describe our work towards partial

solutions, offering a very short preview of this thesis. Parts I, II and III consider these

same questions in detail.

1.3.1 How to represent the lexicon (Part I)

Traditional concordances often index and list occurrences of single word units

[261], which we describe as unigrams. On the surface, this approach seems to allow

the user to name and investigate any concept from a corpus. For instance, a user

might look up the word “falcon” review all mentions of the concept of falcons in Yeats

(Figure 1.1c). However, flat lists of single words do a poor job representing many

concepts in a domain. For example, meeting minutes from the U.S. Federal Reserve

will include discussion of the concept “interest rates”. But because “interest rates”

consists of two words, this concept will not be included in a unigram concordance

index; a user simply can not look up mentions of “interest rates” using a 1-gram

concordance.

Poor representation of multiword phrases is one example of a much broader phe-

nomenon: flat vocabulary lists do not capture many aspects of human mental models

of a domain. For instance, some concepts in a corpus may have multiple names (e.g.

“George Bush” and “Dubya”), use different grammatical forms (e.g. “frequent fliers”

vs. “people who fly frequently”; an example from Stubbs [321]), stand in for other con-

cepts (e.g. metonymy like “Brussels pressured London”), share properties with other

concepts (e.g hypernymy like “fish” vs. “trout”) or draw their meaning from complex

lexical composition (e.g. “vegan shoes”). Traditional data structures for representing

occurrences of words in context (such as the inverted index described in Manning

et al. [216]) do not capture such complexity.

This disconnect limits the utility of current concordances. Some shortcomings

are obvious. For instance, if multiword phrases are not included in the corpus lexi-

10

con, a concordance will not show some concepts from a domain (e.g. “peace treaty”).

Similarly, a concordance will not show some occurrences of concepts which have dif-

ferent names (e.g. references to “Dubya” while reviewing mentions of “Bush”). Yet

other limitations are more subtle. For instance, the linguist García-Marrugo [119]

uses a concordance to manually organize and count complex hierarchical relation-

ships between different names for illegal actors in the Colombian press (e.g. “Front”

vs. “FARC” vs. “Tirofijo”11). Automated lexical systems which similarly organized the

corpus vocabulary might help less experienced users outside linguistics perform such

analysis. Improved representation of the corpus lexicon could also support whole new

kinds of lexically-focused corpus investigation. “Suppose ... I could simply type in the

command supernatural nominatives,” one literary scholar writes [157], “and almost

immediately receive a list of apparitions, devils, ghosts, ghouls, monsters, mummies,

ogres, phantoms, shades, shadows, spirits, vampires, and witches [in a work from

Joseph Conrad].”

Thus, motivated by the possibilities of improved lexical systems which better

reflect how people think, write and talk about subjects described in text, in Part I of

this work, we introduce a high-level research question:

R1: How can lexical systems represent a corpus vocabulary to reflect

human mental and linguistic models of a domain?

In Chapter 2 we describe progress towards a partial solution.12 We propose a computationally-

efficient method for enriching a corpus lexicon with multiword phrases (e.g. “interest

11A nickname for guerrilla leader Manuel Marulanda.

12Some work in user-facing text analysis can also be seen as taking steps to better reflect user
mental models of a domain. For instance, the WordSeer system [243, 2] supports searching by
root (e.g. for “read” and “reading”) to help users find mentions of the same word across grammatical
forms, and the SPIKE system allows a user to interactively find aliases using specialized queries [322].
Outside of NLP, successful user-facing digital tools such as the influential Smalltalk programming
language [168] and the commonly-used Tidyverse data analysis software [344] also attempt to reflect
the ways that people think about their work.

11

rates”), and compare this technique to baseline phrase extraction strategies. Yet while

we show progress towards addressing R1, our work towards answering this broad ques-

tion is incomplete. We describe many directions and possibilities for future work in

Chapter 8, where we also consider future challenges in applying related work from

NLP in our user-facing setting.

Note that throughout this work, we use the notation Q to reflect a user’s query

during lexical corpus analysis. Q is an item from a corpus lexicon. In different chap-

ters, Q will take on different grammatical types, based on different representations of

the corpus vocabulary. For instance, Q will sometimes be a single word (e.g. “army”

in Chapter 7), a noun phrase (e.g. “human rights” in Chapter 6) or a noun phrase

pair (e.g. “peace treaty”–“Bill Clinton” in Chapter 3). We often employ our proposed

phrasefinding method from Chapter 2 to enrich a unigram corpus lexicon with noun

phrases. Chapter 4 and 5 present NLP methods which would in principle apply to

any arbitrary (and potentially gappy) value of Q, regardless of its lexical type.

1.3.2 How to show lexical items in context (Part II)

In query-focused lexical corpus analysis, a user reviews mentions of a query word

Q in context. This opens a natural question: how should a system show mentions of

a query in documents? KWIC viewers offer one particular choice for choosing what

to show from a corpus; they always display the tokens or characters immediately

surrounding Q, wherever it appears in text. But there are many other possible ways

to show query words in context. Figure 1.3, Figure 1.4, and Figure 1.5 suggest a few

different possibilities.

12

In analyzing the many possible choices, we use the term search need to refer

to the reason that users of a particular application investigate a lexical query,13 and

assume that different users of different applications will have different search needs.

For instance, Chapter 7 describes a historian studying how the news media depicts

Sally Ride. This historian might wish to use an application which displayed phys-

ical descriptions of the female astronaut (see Figure 1.3). But similar emphasis on

appearance might be less appropriate in a tool for users trading financial securities.

Noting that search need will vary by application, we then organize Part II around a

central research question:

R2: How might lexical systems show query terms in context, to best

satisfy user search need?

In addressing R2, we argue that regardless of search need, applications will need to

strive for extractions which (1) adhere to some hard or soft brevity constraint, (2)

show mentions that sound natural when removed from the corpus and (3) include the

most important information, based on the search needs of a particular user group. We

describe these as the brevity, acceptability and importance criteria, and detail

each criterion below.

Brevity. Any lexical application will have to contend with limited screen space

and user attention. Thus we assume there is some application-specific limit to how

much context can and should be presented to the user. We also assume that different

applications may need to show shorter or longer mentions of Q in context. For ex-

13We distinguish between the user’s search need and their query intent. We use search need to
refer to the reason why a person turns to a particular specialized search tool. We use the IR term [44]
query intent to refer to the (typically unobserved) reason a user performs a particular keyword search
using a general-purpose, open-domain document search engine. We typically assume or observe a
search need, but do not attempt to infer query intent. In industrial settings, inferring query intent
seems to rely on heterogeneous, large-scale and proprietary datasets (e.g. user location data from
the Android operating system [349]). In principle, our methods for meeting search needs could be
applied in general purpose systems which first correctly infer query intent.

13

ample, Luhn’s original KWIC index [208] allowed for 60 characters per concordance

line (including the keyword). But some lexicographers report the need for need mul-

tiple lines of context to provide a syntactically-complete understanding of word use

[261].14 We use the term context budget to define the number of tokens, characters

or pixels of context allotted per given lexical type in the corpus.15 For instance, a

KWIC view showing J separate 60-character spans containing Q would have an im-

plied context budget of 60 ∗ J characters. (Formally, we say the character length of

Q counts towards the budget.)

Acceptability. A human or machine may string together any arbitrary sequence of

word tokens. But some sequences will sound natural to native speakers (e.g. “Aristide

fled Haiti in 2004”); others will not (e.g. “Aristide Haiti in”). In this work, applying

terminology from linguistics [298], we describe sequences which sound natural as “ac-

ceptable.” We then assume that users wish to review well-formed or acceptable output

extractions from a lexical system,16 with an understanding that acceptability might

need to be balanced against other goals.

Based on this assumption, we introduce several methods concerned with creat-

ing well-formed mentions of Q in context. In Chapter 3, we propose an approach

to identifying token spans that sound natural when removed from documents. In

Chapter 4, we study how to shorten sentences mentioning Q to create well-formed

output (among other goals). Finally, in Chapter 5, we show how to efficiently create

natural-sounding extractions from single sentence. In each case, our goal is to identify

14Showing more context for each mention of a word makes it harder to look over many mentions
of a lexical item in context. Rouse and Rouse report that one 13th century concordance showed so
much context that the work ended up an “impossibly long” and “expensive failure” [289].

15Our term context budget is based on the related term summary budget in NLP; e.g. in Martins
and Smith [224], or Lin and Bilmes [201].

16This assumption is based on evidence from information retrieval, which suggests that users prefer
snippets which sound natural over jumbled text fragments [66]. A highly-cited textbook on creating
search engines advises creating snippets which read fluidly when extracted from documents [77].

14

(possibly gappy) spans of text which will sound natural when they are extracted from

a corpus and shown to a user.

Importance. Because lexical application designers seek to best satisfy user search

need under brevity constraints, we argue that they must consider how to fill the

context budget with what a given class of users will consider to be the most im-

portant information from a corpus, based on their search need. Thus, throughout

this work, we present several different methods for defining and identifying important

information from documents.

In Chapter 3, we offer a new supervised approach to identifying the most impor-

tant descriptions of relationships between pairs of lexical query terms.17 In Chapter

4, we assume that the user’s query term is the only known important information

in a sentence, and offer a method for creating well-formed shortened sentences which

contain Q. In Chapter 5, we present a method for efficiently extracting salient infor-

mation in sentences, based on natural supervision from newspaper headlines (which

serve as a proxy for user salience judgments). Finally, in Chapter 7, we study what

one particular user group considers the important information in a document or para-

graph.

These efforts towards identifying and extracting important information from a

corpus are closely related to work on extractive summarization [82] in natural

language processing, which seeks to choose some small selection of natural-sounding

text from a collection of one or more documents to summarize their contents. Our

17Our interest in summarizing relationships follows from the capacity of modern text processing,
which offers new techniques for identifying and representing patterns which were not available to
the authors of traditional concordances. New text processing tools like dense vectors [236, 198, 87],
topic models [38] and pairwise co-occurrence statistics [262] both offer new opportunities for lexically-
focused corpus exploration (e.g. the Termite system [63] or the t-SNE method [333]) and present
new questions about why certain pairs of lexical items co-occur together in a text (e.g. why does
“Slobodan Milosevic” co-occur with “air strikes”?). Note that for some techniques (e.g. t-SNE), the
distance between some pair of lexical items is determined by a global objective considering all pairs
of words; examining co-occurrences of a single lexical pair can build intuition, but not offer full
explanation.

15

s some people, since Mr. Tudjman was an active anti-fascist
 ernment bureaucracy. Mr. Tudjman was an active anti-fasc

ent campaign, President Tudjman sought to reconcile the

Tudjman sought to reconcile ... divisions by arguing that the
fascist and anti-fascist Croatians performed ... equally
valuable service for their country

Figure 1.4: Two choices for showing the lexical item “Tudjman” in context, using an
allotted budget of 150 characters. The left interface shows a traditional KWIC view.
The right interface shows a (manually-constructed) extractive summary, optimized for
traditional summarization criteria such as salience, readability and lack of repetition.
This work revisits KWIC views from the perspective of extractive summarization in
NLP.

efforts may be considered a form of extractive summarization, with an added and

atypical hard constraint that summary output must contain the user’s query.

1.3.3 How to design lexical systems for specific user groups (Part III)

In Part III of this work, we consider how to design, build and evaluate new user-

facing systems for lexical corpus analysis, sometimes through applying NLP methods

from Part I and Part II. Creating user-facing lexical systems presents many complex

and interrelated design and engineering choices. At minimum, building any lexical

application requires some consideration of how to organize a corpus lexicon based on

the user’s mental and linguistic models of a domain (Part I), and how to present lexical

items in context based on user search need (Part II). But user-facing applications also

present many other design questions, such as how many occurrences of a query to

show on screen (see Chapters 6 and 7 for detailed discussions). Because we assume

that is impossible to answer such questions in a principled manner without a clear

understanding of the specific needs of specific user groups, in Part III we turn to

research methods from human–computer interaction (HCI) and user-centered design

to address a third research question:

R3: How can we build new lexical systems for specific user groups?

To help answer, we describe the design, development and evaluation of two systems

designed for specific use cases: the Rookie system designed for journalists learning

16

about new topics (Chapter 6) and the ClioQuery system designed for historians

and archivists performing news search (Chapter 7). We validate these approaches

with qualitative and quantitative user studies, which show that Rookie helps jour-

nalists learn about new topics and that ClioQuery helps historians conduct archive

research.18

Lexicon Context Users

Rookie Unigrams/NPs Sentences Journalists
ConceptMap NPs (in pairs) Relationship summaries General users

ClioQuery Unigrams Sentence summaries Historians/archivists

Table 1.2: This work discusses three possible interfaces for lexical corpus analysis,
ConceptMap(s) (§3.5), Rookie (§6) and ClioQuery (§7). These sytems must
grapple with three central questions: (1) how will the system represent the lexicon
(2) how will the system select context surrounding each lexical item and (3) how do
we design for the user’s search needs? We abbreviate noun phrases as “NPs” above.

1.4 Related work

Our work on lexical corpus analysis lies at the intersection of three subfields of

computer science: natural language processing (NLP), information retrieval (IR) and

human–computer interaction (HCI). Throughout this work, we also apply methods

from psycholinguistics (Chapter 4), and closely investigate specialized search behavior

in journalism, history and library science (Chapters 6 and 7). Because we adopt a

cross-disciplinary approach, our efforts extend and draw from a diversity of related

work, beyond connections with exploratory data analysis described throughout this

chapter.

18Our Rookie and ClioQuery systems focus on users who are interested in lexical items as a
means towards answering broader research questions. For instance, one historian examined mentions
of the Iraqi city of Fallujah in U.S. newspaper editorials to better understand public perception of the
second U.S.–Iraq war (Chapter 7). However, future systems might serve linguists, lexicographers,
and NLP researchers studying lexical items themselves, by helping such users formalize word senses
[238], explain temporal changes in lexical semantics [136], construct lexical resources [16], or identify
lexical relations [288].

17

Figure 1.5: A news corpus (top subfigure), along with several possible systems for
lexical corpus analysis (bottom three subfigures). Each system shows mentions of one
or more lexical items (bolded) in context (underlined, in color). Different systems will
be appropriate for different search needs.

The vote was secretly filmed by JNA cameras, and was publicly revealed in a famous BBC
documentary series, “The Death of Yugoslavia,” which in 1995 exposed The vote was secretly filmed
by JNA cameras, and was publicly revealed in a famous BBC documentary series, “The Death of by

JNA cameras, and was publicly revealed in a famous BBC do Yugoslavia,” which in 1995 exposed

The vote was secretly filmed by JNA cameras, and was publicly revealed in a famous BBC
documentary series, “The Death of Yugoslavia,” which in 1995 exposed details of the collapse of

Yugoslavia, its subsequent wars and peace accords.
President Clinton said he believed that President Slobodan Milosevic of Yugoslavia would submit

NATO Hits Serbian Targets, New York Times, Mar. 25, 1999
NATO forces, in the wake of failed peace talks, opened an assault on Serbia with cruise missiles and
bombs as President Clinton denounced President Slobodan Milosevic of Yugoslavia for feeding
the ''flames of ethnic and religious division'' in Kosovo and endangering neighboring countries …

(a) A news corpus. The inferfaces below show different lexical items from this corpus in
context. The first document in the corpus is shown in front of other (stacked) documents.

President Slobodan Milosevic of Yugoslavia for fee
roatia and Slobodan Milosevic of Serbia, “stated that
t the conduct of Mr. Milosevic could not be allowed

(b) A traditional keyword-in-context (KWIC) interface, showing three mentions of the
single-word lexical item Q =“Milosevic” with 20 characters of surrounding context. The
first line in the KWIC interface (underlined) is drawn from the first document in the corpus.

President
Clinton

Air strikes

Slobodan
Milosevic

war
crimes

may be indicted for

denounced President

to undermine President

(c) A ConceptMap interface showing pairs of noun phrases (e.g. Q =“President Clin-
ton”/“Slobodan Milosevic”) in context. The system selects from mentions of both phrases
in a corpus to summarize their relationship (see Chapter 3 for a comparison with relation
extraction). Some mentions of Clinton and Milosevic in the corpus (shown stacked beneath
the first document in the corpus) are not selected for display.

• NATO officials suggested that the air assaults against Serbia may not be enough ...
• NATO forces … opened an assault on Serbia with cruise missiles and …

NATO, Serbia
Showing a summary of NATO and Serbia drawn from 33 documents in March, 1999

March 1,1999 March 31,1999

(d) A sample interface for lexical corpus analysis showing the single-word lexical items Q
=[“NATO,” “Serbia]” in context. This interface uses text simplification techniques (see
Chapters 4 and 5) to show query terms in context.

18

Most obviously, our efforts are closely related to extensive prior study of user-

facing text analysis systems from HCI, such as Termite [63] and Jigsaw [126].

In Chapters 6 and 7, we discuss the strengths and weaknesses of these prior tools

and other existing approaches, and compare them to our proposed lexical systems,

Rookie and ClioQuery. Chapter 6 also explains why we avoid topic modeling [38]

and entity tagging [100, Chp. 17], which are sometimes used in prior work.

Our research is also closely related to information retrieval [216], which most

traditionally focuses on developing search engines that return ranked lists of doc-

uments in response to a user’s query. Like these traditional keyword search tools,

throughout much of this work (e.g. in Chapters 3, 5, 6 and 7), we assume that a

user wishes to search for some keyword Q in a corpus. We are also mindful of the

computational costs associated with indexing (Chapter 2) and presenting (Chapter

5) mentions of Q across a corpus. Similar concern with computational efficiency is

common in IR.19 Our focus on creating well-formed, shortened query mentions is

also similar to efforts towards constructing query-biased snippets [325] for search

engine results pages.

However, unlike in IR, our work typically responds to keyword input by showing

users mentions of Q in context, rather than by ranking documents. (In this sense,

our work is more similar to recent efforts towards extractive search [322] in NLP,

which explores the idea of searching over patterns in dependency graphs instead of

documents.) Additionally, our work allows Q to take on different grammatical types

(e.g. a noun phrase pair, Chapter 3), and sometimes focuses on exploiting structured

grammatical representations of sentences (e.g. dependency parses, in Chapter 5). This

grammatical orientation is less common in IR, which typically represents language

using a bag-of-words [216].

19For instance, one popular textbook details the time and space costs associated with many
different ways of representing the locations of words in text [216].

19

As we describe in Section 1.3.2, our efforts towards showing Q in context may also

be considered a particular form of query-focused,multi-document summarization

[82, 100]. Many of the methods presented in Part II specifically build on and respond

to the text summarization literature from NLP. In particular, Part II presents several

new approaches to sentence compression, a subliterature from text summariza-

tion concerned with summarizing individual sentences (see Knight and Marcu [189]).

We describe related work from sentence compression in Chapters 4 and 5. Chapter

3 presents new summarization techniques focused on summarizing relationships, in

which Q is a pair of noun phrases. In Chapter 3, we include a detailed discussion

explaining the ways in which this effort is both similar to and different from extensive

prior work on relation extraction [100, Chp. 17].

1.5 Evaluation criteria

Our work on lexical corpus analysis is inspired by the traditional concordance, a

computationally-efficient, highly-interpretable, highly-trustworthy and domain-independent

corpus analysis tool, which has proven useful for many centuries. Because we aim

to design other lexical tools with similar properties, we often evaluate our work in

terms of computational efficiency, domain independence, usability, transparency and

trustworthiness.20 We explain the importance of each evaluation criterion below.

To begin, because latency is known to make user interfaces less effective [205],

and because many practitioners work with limited computational resources (e.g. a

single laptop), we often measure the computational efficiency of our proposed

20Of course, measuring our contributions by such criteria does not mean we fully achieve each
goal. This work describes progress towards these objectives, but there is more work to be done (see
Chapter 8).

20

techniques.21 For instance, in Chapter 5, we evaluate the latency of our proposed

VertexAddition sentence shortening technique on a CPU, to simulate performance

on an ordinary laptop. While we sometimes experiment with neural network methods

(e.g. in Chapter 5), our interest in efficient computation often leads us to focus on

techniques which do not require GPUs. Securing special computation (e.g. setting

up a cloud server) presents a barrier to quick data analysis, and some users (e.g.

historians, Chapter 7) may be unable to configure or pay for special computation.

Similarly, because we hope to make tools which work reliably on new corpora, and

because baseline approaches such as concordances and traditional keyword document

search engines work well across different kinds of text, we also measure the domain

independence of many methods proposed in this work. While we can’t test our

contributions in every domain, we do take care to often evaluate our efforts across

heterogeneous corpora. For instance, in Chapter 2, we evaluate our proposed NPFST

method using both 17th century criminal court proceedings and social media posts.22

Additionally, because we aim to develop tools which help groups of users in their

work, we also measure the usability of our proposed systems via user studies. For

instance, Chapter 6 includes both qualitative and quantitative evaluation of the us-

ability and efficacy of our proposed Rookie system. Note that systems from Part III

often employ NLP methods from Part I and Part II, demonstrating how our proposed

NLP techniques can be applied in measurably useful applications.

Finally, evaluating by usability also forced us to implicitly evaluate and empha-

size the transparency and trustworthiness of our proposed systems, particularly

21With exceptions [299], computational efficiency is typically overlooked in contemporary NLP.
For instance, the popular SuperGLUE [338] benchmark evaluates based on F1, accuracy and exact
matching rather than latency or memory use; researchers evaluated based on this common metric
have little incentive to develop low-latency or memory-efficient techniques.

22Our interest in domain independence also leads us to sometimes avoid supervised techniques,
which will perform less reliably in cases when the underlying data distribution changes from training
to test time. In corpus analysis, such domain shift is all but guaranteed; the goal is to analyze new
corpora, where the distribution is almost necessarily unknown.

21

during the course of developing iterative prototypes.23 For instance, speaking with

historians and archivists about early versions of ClioQuery (Chapter 7) revealed

that some such experts do not trust uninterpretable summarization techniques, and

speaking with journalists while developing the Rookie system (Chapter 6) revealed

the importance of simple and reliable visualizations, which users could understand.24

Therefore, we suspect that user studies focused on overall usability also implicitly

measured transparency and trustworthiness; when users did not trust or understand

early prototypes, they offered negative feedback.25

1.6 Summary of contributions and results

Our work offers a collection of systems and methods which together measurably

support users undertaking lexical corpus analysis. We briefly summarize our con-

tributions below, distinguishing between contributions towards exploratory analysis

and contributions towards query-focused analysis. (These terms are first described in

Section 1.2.1).

23Following prior work, we say that a system is transparent if the user understands the com-
puter’s output (sometimes described as interpretability [90]). We say that a system is trustworthy
if the user believes the system has the capacity to help them undertake a task, and the integrity
to adhere to domain-specific standards. Capacity and integrity are commonly applied criteria for
assessing the trustworthiness of an interface in HCI (e.g. SMILY [50]), based on earlier ideas from
Mayer et al. [226] in organizational management.

24In Part III, we thus avoid abstractive summarization methods [82] which generate output sum-
mary token spans that do not occur in input source text. Abstractive techniques are more flexible
than extractive methods, but may make it harder for users to trust summary output, because the
provenance of information shown a summary (i.e. where the information comes from, in underlying
documents) can not be directly observed. Moreover, abstractive techniques are also prone to factual
errors [191], which may undermine user trust. Both Zhang and Cranshaw [352, Section 3.3.2] and
Chapter 7 of this work discuss issues related to trust and summarization in greater detail.

25Our experience designing trustworthy NLP systems is consistent with other work [10], which
suggests that designing AI systems (e.g. using NLP) requires accommodating inevitable mistakes
from probabilistic inference, including work considering the relationship between agency and au-
tomation [152, 130], and work seeking to combine the strengths of human and machine intelligence
in so-called mixed-initiative [163] or AI-infused [10] user interfaces.

22

1.6.1 Exploratory contributions

In exploratory lexical corpus analysis, a user investigates a new body of text

by examining the corpus vocabulary. Therefore, in this work we offer both tools

and methods focused on providing a type-level perspective for exploring a corpus,

including:

• The Rookie system (Chapter 6), which suggests noteworthy items from a cor-

pus lexicon during a particular time period, based on a user’s initial free text

query. In a qualitative usability evaluation, journalism students described how

this form of user interface could help provide a “snapshot” of a news archive in

cases where “you aren’t...familiar [with] the history of the topic” and “want to

build some context first.” We describe a quantitative evaluation of Rookie’s

query-focused contributions in Section 1.6.2.

• The NPFST method (Chapter 2), which extracts noun phrases from text for use

in downstream corpus exploration. In a quantitative evaluation, we demonstrate

that NPFST efficiently extracts many important and interpretable phrases (e.g.

“social security”) across three heterogeneous domains (news, social media and

historical criminal proceedings), without returning too many unimportant or

uninterpretable phrases (e.g. “and the”). Reliability across domains is important

for corpus analysis, as tools for exploring bodies of documents should work well

on different kinds of text. We employ companion software to NPFST in the

Rookie system, offering evidence that the approach can be successfully applied

in user-facing software.

• A new method for summarizing relationships, applied in ConceptMap in-

terfaces (Chapter 3). ConceptMaps are graphical summaries displayed as

directed graphs, which describe the relationships between lexical items in a cor-

pus to help a user explore a new area. Our work on concept maps extends our

23

efforts towards constructing lexicons (Chapter 2) and presenting noteworthy

co-occurring items from lexicons to users (Chapter 6), because concept maps

can help explain why noteworthy phrases may co-occur in a corpus. We eval-

uate our proposed approach on heterogeneous datasets, to minimize the risk

of overfitting to a particular domain. Although concept maps are designed for

exploratory analysis, our method for summarizing relationships also achieves

high yield, which helps in query-focused analysis. Our technique allows for the

summarization of roughly two times more query pairs than baseline relation

extraction methods, allowing the user to investigate more relationships in a

corpus.

Having now briefly reviewed our chief exploratory contributions, we present our pri-

mary query-focused contributions in the next section.

1.6.2 Query-focused contributions

In query-focused lexical corpus analysis, a user investigates a specific item from

the lexicon Q, by reviewing its use in context. To help with this use case, we offer tools

and methods focused on providing a token-level perspective on a corpus, including:

• The Rookie system, which helps users investigate lexical queries across docu-

ments. In a quantitative evaluation, we found that by showing lexical items in

context, Rookie helped users answer a historical question 37% faster than a

traditional search interface. Rookie also suggests important lexical items, for

corpus exploration (see Section 1.6.1).

• The ClioQuery system, which helps users investigate lexical queries by pre-

senting all mentions of Q in a corpus, using NLP methods from Chapters 3 and

4. In a qualitative expert interview evaluation and field study evaluation, histo-

rians articulated the advantages of the ClioQuery interface over a traditional

keyword search engines for investigating lexical queries.

24

• A low-latency, CPU-based VertexAddition algorithm for simplifying men-

tions of Q to fit within available screen space. In Chapter 5, we compare this

linear method to an earlier approach based on an ILP objective, which requires

worst-case exponential computation. Our implementation of VertexAddi-

tion runs 11x faster than the ILP, which is consistent with theoretical results.

Recall that low latency is important, because lags are known to hinder interfaces

for data analysis [205]. We also evaluate our approach based on well-formedness

and token-level F1 score. Our proposed method achieves similar or higher scores

than prior work in such automatic evaluations.

• A study of sentence simplification via clause deletion (Chapter 4), which of-

fers (1) a new corpus of human judgments of the well-formedness of shortened

sentences (2) a computational model of such judgments, and (3) a sentence sim-

plification system based on our model of human perceptions of well-formedness.

Our work in Chapter 4 is motivated by weaknesses in traditional supervision for

the sentence simplification task, which implicitly defines the important infor-

mation in a sentence by specifying a single “gold” shortening. By contrast, our

proposed approach allows a practitioner to define the important information

which should be included in an shortened sentence (e.g. inclusion of Q), which

reduces dependence on domain-specific supervision (a broad goal for this work).

We evaluate our model based on how well it can predict human judgments of

well-formedness, measured by accuracy and ROC AUC.

We present these contributions in much greater detail in the remaining chapters of

this work. We then end with a discussion of future research directions in lexical corpus

analysis (Part IV).

25

PART I: HOW TO REPRESENT
THE LEXICON

CHAPTER 2

NOUN PHRASE EXTRACTION

This chapter is adapted from Bag of What? Simple Noun Phrase Extraction for

Text Analysis [142].

Synopsis

Traditional concordances index and display single word units called unigrams.

For example, Figure 1.1a shows how a reader might use a traditional concordance

to review mentions of the unigram “punishment” in the Christian Bible. Yet, some

concepts in a corpus are best represented by multiword phrases, rather than single

word units. For instance, the concept “social security” is better represented as a two-

word phrase (“social security”) than as the single words “social” and “security”. A

reader who wants to understand how U.S. politicians discuss “social security” needs

to review mentions of the words “social” and “security” as they occur together in a

body of text.

In this chapter, we offer the NPFST method to help efficiently identify such multi-

word units for lexical corpus analysis. NPFST uses a part-of-speech tagger and a finite

state transducer to extract multiword noun phrases from a corpus. We compare this

approach to alternative n-gram and parsing methods, and find that NPFST achieves

lower yield and higher recall. We also observe that NPFST efficiently extracts inter-

pretable phrases without configuration on many different kinds of English text, which

is helpful for corpus analysis (Section 1.5). Open-source software based on NPFST is

available on the web at: https://github.com/slanglab/phrasemachine.

27

https://github.com/slanglab/phrasemachine

2.1 Introduction

In exploratory lexical corpus analysis (see Section 1.2.1) a user makes sense of

a corpus by reviewing items from a lexicon. Yet some concepts from a corpus are

best expressed with multiword phrases (e.g. “social security”), rather than single word

units (e.g. “New York” vs. “New” and “York”). Therefore, in this chapter, we consider

how to extract meaningful multiword phrases, without also collecting unimportant or

nonsensical extractions (e.g. “it went to”). Lexically-focused systems such as Rookie

(Chapter 6) can then show such multiword phrases to users during exploratory corpus

analysis.

Throughout this chapter, we refer to the process of identifying all multiword units

in a corpus as an extraction method. We describe and define several common ex-

traction methods, and present a new method, NPFST, which uses a part-of-speech

tagger and a finite state transducer to efficiently extract noun phrases from a cor-

pus. We then evaluate and compare extraction methods in terms of yield, recall,

interpretability, and computational efficiency, where:

• Yield refers to the number of phrases that a method extracts; a lower yield

is desirable because it requires fewer computational and human resources to

process extracted phrases.1

• Recall refers to a method’s ability to recover relevant or important phrases, as

determined by a human. We measure this quality by computing the recall of

named entities, which are clearly important phrases in any domain.

1A note on measuring precision. In this chapter, we use yield as an approximation of
precision. Measuring precision requires defining all important phrases in a domain in order to record
how many extracted phrases are in fact important. This is a tricky task which is not our focus in
this work. Instead, we use yield as a coarse but clear-cut approximation of precision. We assume
that if a method extracts many phrases (i.e. high yield), it will likely extract many unimportant
phrases (i.e. low precision).

28

• Interpretability is a qualitative property of extracted phrases. If a person read-

ing an extracted phrase can easily understand which concept the phrase refers

to in text, we say the the phrase is interpretable. For instance, we consider

the phrase “social security” to be interpretable. We consider the phrase “of the

social” to be not interpretable.

• Computational efficiency refers to the wall clock speed of an extraction method.

Future work might extend this definition to also include a method’s memory

footprint.

Overall, we show that the NPFST strategy efficiently extracts many interpretable

multiword units without extracting a large number of overall phrases. Qualities like

interpretability and efficiency are important for lexical corpus analysis (Section 1.5).

2.2 Background: Baseline extraction methods

We review several baseline extraction strategies below.2

2.2.1 n-gram methods

The simplest extraction method is AllNGrams(K). This method extracts all n-

grams, up to length K, from tokenized, sentence-segmented text, excluding n-grams

that cross sentence boundaries. It is commonly used to extract features for text

classification (e.g., Yogatama et al. [350]), but extracts fragmentary lexical units that

cross sentences constituents and may not be meaningful when removed from context.

For example, the text of the Affordable Care Act includes the hard-to-interpret 4-

gram, “the Internet website of.” This phrase plainly does not refer to any concept in

2We do not evaluate statistical collocation methods (e.g., Dunning [96] or Hannah and Wallach
[145]), another possible approach. These methods focus on within-n-gram statistical dependence.
In informal analyses, we found their recall unsatisfying for low-frequency phrases, but defer a full
comparison for future work.

29

the domain. Additionally, although AllNGrams(K) has high recall (provided that K

is sufficiently large), it suffers from a high yield (requiring more resources to process

and store extracted phrases).

2.2.2 Parsing methods

Another possible extraction method uses syntax to collect phrases which corre-

spond to sentence constituents. In this chapter, we assume that the user wishes to

extract noun phrases (a particular kind of constituent) because unlike verb, prepo-

sitional, or adjectival phrases, NPs often are meaningful as standalone phrases even

when stripped from their surrounding context (e.g., [Barack Obama]NP vs. [was in-

augurated in 2008]V P).

There are many methods for extracting NPs. Given the long history of constituent

parsing research in NLP, one obvious approach is to run an off-the-shelf constituent

parser and then retrieve all NP non-terminals from the trees.3 We refer to this method

as ConstitParse. Because the major sources of English training data, such as the

Penn Treebank [221], include determiners within the NP and non-nested flat NP

annotations,4 we find that this method leads to low recall in our context (see Section

2.4). (Since modern parsers rely on these sources of training data, it is very difficult

to change this behavior.)

2.2.3 Shallow parsing methods

Another possible extraction method, proposed by Justeson and Katz [178], is to

use part-of-speech (POS) patterns to find and extract NPs, a form of shallow partial

3Another type of syntactic structure prediction is NP chunking. This produces a shallower,
non-nested representation.

4The English Web Treebank (LDC2012T13) has some more nesting structure and OntoNotes
(version 5, LDC2013T19) includes a variant of the Penn Treebank with Vadas and Curran [331]’s
nested NP annotations. We look forward to the availability of constituent parsers trained on these
data sources.

30

parsing [3]. Researchers have used this approach in a variety of different contexts [33,

116, 185, 62, 23]. Informally, extracting phrases in this manner requires defining

a part-of-speech pattern and then finding all token spans which match the pattern.

More formally, a pattern-based extraction method can be specified in terms of a triple

of parameters: (G,K,M), where G is a grammar, K is a maximum length, and M

is a matching strategy. The grammar G is a non-recursive regular expression that

defines an infinite set of POS tag sequences (i.e., a regular language); the maximum

length K limits the length of the extracted n-grams to n ≤ K; while the matching

strategy M specifies how to extract text spans that match the grammar.

The simplest grammar that we consider is

(A |N) ∗N(PD ∗ (A |N) ∗N)∗

defined over a coarse tag set of adjectives, nouns (both common and proper), prepo-

sitions, and determiners. We refer to this grammar as SimpleNP. The constituents

that match this grammar are bare NPs (with optional PP attachments), N-bars, and

names. We do not include any determiners at the root NP.

There are a number of possible matching strategies which might be used to find

strings matching G of length less than K. We consider three baseline matching

strategies, each of which can (in theory) be used with any G and K:

• FilterEnum enumerates all possible strings in the regular language, up to

length K, as a preprocessing step. Then, at runtime, it checks whether each n-

gram in the corpus is present in this enumeration. This matching strategy

is simple to implement and extracts all matches up to length K, but it is

computationally infeasible if K is large.

• FilterFSA compiles G into a finite-state automaton (FSA) as a preprocessing

step. Then, at runtime, it checks whether each n-gram matches this FSA.

31

Like FilterEnum, this matching strategy extracts all matches up to length K;

however, it can be inefficient if K is large.

• GreedyFSA also compilesG into an FSA, but uses a standard greedy matching

approach at runtime to extract n-grams that match G. Unlike the other two

matching strategies, it cannot extract overlapping or nested matches, but it can

extract very long matches.5

In their original presentation, Justeson and Katz [178] defined a grammar that

is very similar to SimpleNP and suggested using 2- and 3-grams (i.e. K =3). With

this restriction, their grammar comprises seven unique patterns. They also proposed

using FilterEnum to extract text spans that match these patterns. We refer to this

method as JK = (SimpleNP, K =3, FilterEnum). Many researchers have used this

method, perhaps because it is described in a popular NLP textbook by Manning and

Hinrich Schütze [215].

2.3 Our proposed NPFST method

We propose a new pattern-based extraction method: NPFST = (FullNP, K=∞,

RewriteFST). In §2.3.1, we define the FullNP grammar, and in §2.3.2, we define the

RewriteFST matching strategy.

2.3.1 FullNP Grammar

FullNP extends SimpleNP by adding coordination of pairs of words with the same

tag (e.g., (VB CC VB) in (cease and desist) order); coordination of noun phrases;

parenthetical post-modifiers (e.g., 401(k), which is a 4-gram because of common NLP

tokenization conventions); numeric modifiers and nominals; and support for the Penn

5We implemented both FilterFSA and GreedyFSA using standard Python libraries—specifically,
re.match and re.finditer.

32

�����
�����

�����
�����

�������
�����

�����
�����

�����
�����

Figure 2.1: Composed rewrite lattice L = I ◦ P for input I = (JJ NNP NN). Five
spans are retrieved during lattice traversal.

Treebank tag set, the coarse universal tag set [274], and Gimpel et al. [123]’s Twitter-

specific coarse tag set. We provide the complete definition in the appendix.

2.3.2 RewriteFST Matching Strategy

RewriteFST uses a finite-state transducer (FST) to rapidly extract text spans that

match G—including overlapping and nested spans. This matching strategy is a form

of finite-state NLP [285], and therefore builds on an extensive body of previous work

on FST algorithms and tools.

The input to RewriteFST is a POS-tagged6 sequence of tokens I, represented as an

FSA. For a simple tag sequence, this FSA is a linear chain, but, if there is uncertainty

in the output of the tagger, it can be a lattice with multiple tags for each position.

The grammar G is first compiled into a phrase transducer P ,7 which takes an input

sequence I and outputs the same sequence, but with pairs of start and end symbols—

[S] and [E], respectively—inserted to indicate possible NPs (see Figure 2.1). At

runtime, RewriteFST computes an output lattice L = I ◦P using FST composition;8

since it is non-deterministic, L includes all overlapping and nested spans, rather than

just the longest match. Finally, FilterFST traverses L to find all edges with a [S]

6We used the ARK POS tagger for tweets [123, 265] and used Stanford CoreNLP for all other
corpora [326, 217].

7We used foma [167, 29] to compile G into P . foma was designed for building morphological
analyzers; it allows a developer to write a grammar in terms of readable production rules with
intermediate categories. The rules are then compiled into a single, compact FST.

8We implemented the FST composition using OpenNLP [7] and pyfst (http://pyfst.github.
io/).

33

http://pyfst.github.io/
http://pyfst.github.io/

Matching Strategy All Matches? Large K?

FilterEnum yes infeasible
FilterFSA yes can be inefficient
GreedyFSA no yes

RewriteFST yes yes

Table 2.1: RewriteFST matching strategy versus the matching strategies described
in §2.2.3. Like FilterEnum and FilterFSA, RewriteFST extracts all matches up to
length K; in contrast, GreedyFSA cannot extract overlapping or nested matches.
Like GreedyFSA, RewriteFST can extract long matches; in contrast, FilterEnum and
is infeasible and FilterFSA can be inefficient if K is large.

symbol. From each one, it performs a depth-first search to find all paths to an edge

with an [E] symbol, accumulating all [S]- and [E]-delimited spans.9

In Table 2.1, we provide a comparison of FilterFST and the three matching strate-

gies described in §2.2.3.

2.4 Evaluation of NPFST compared to baselines

In this section, we provide experimental results comparing NPFST to the baseline

extraction methods described in §2.2 in terms of yield, recall, efficiency, and inter-

pretability. NPFST has a low yield and high recall, and efficiently extracts highly

interpretable phrases.

2.4.1 Yield and Recall

Yield refers to the number of phrases extracted by a method, while recall refers to

a method’s ability to recover the most relevant or important phrases, as determined

by a human. Because relevance and importance are domain-specific concepts that

are not easy to define, we evaluate recall using three named-entity recognition (NER)

9There are alternatives to this FST approach, such as a backtracking algorithm applied directly
to the original grammar’s FSA to retrieve all spans starting at each position in the input.

34

datasets (named entities are undoubtedly relevant and important phrases in a given

domain):

• Mentions of ten types of entities on Twitter from the WNUT 2015 shared

task [19]

• Mentions of proteins in biomedical articles from the BioNLP shared task 2011 [184]

• A synthetic data set of named entities in New York Times articles [292], iden-

tified using Stanford NER [217]

For each data set, we defined a method’s yield to be the total number of spans that

it extracted and a method’s recall to be the percentage of the (labeled) named entity

spans that were present in its list of extracted spans.10

Figure 2.2 depicts recall versus yield11 for NPFST and the following baseline meth-

ods: AllNGrams(K) with different values of K, ConstitParse,12 JK, and (SimpleNP,

K=∞, GreedyFSA).

A good method should have a low yield, but high recall—i.e., the best methods

are in the top-left corner of each plot. The pattern-based methods all achieved high

recall, with a considerably lower yield than AllNGrams(K). ConstitParse achieved a

lower yield than NPFST, but also achieved lower recall. JK performed worse than

NPFST, in part because it can only extract 2- and 3-grams, and, for example, the

BioNLP data set contains mentions of proteins that are as long as eleven tokens

10We assumed that all methods extracted all unigram spans. Because the yield and recall values for
(SimpleNP, K=3, FilterFSA) are the same as those of JK, we omit these values from Figure 2.2. We
also omit yield and recall values for (FullNP, K=∞, FilterEnum) and (FullNP, K=∞, FilterFSA)
because they are identical to those of NPFST. Finally, we omit yield and recall values for (FullNP,
K=∞, GreedyFSA) because our implementation of GreedyFSA (using standard Python libraries)
is too slow to use with the FullNP grammar.

11The WNUT data set is already tokenized; however, we accidentally re-tokenized it in our ex-
periments. Figure 2.2 therefore only depicts yield and recall for the 1,278 (out of 1,795) tweets for
which our re-tokenization matched the original tokenization.

12We used the Stanford CoreNLP shift–reduce parser.

35

(a) WNUT (b) BioNLP (c) NYT

Figure 2.2: Recall versus yield for AllNGrams(K) with K = 1, . . . , 6, ConstitParse,
JK, (SimpleNP, K =∞, GreedyFSA), and NPFST. A good method should have a
low yield, but high recall. Thus, the best methods are in the top-left corner of each
plot. For visual clarity, the y-axis starts at 0.5. We omit yield and recall values for
AllNGrams(K) with K > 6 because recall approaches an asymptote. For the WNUT
data set, we omit yield and recall values for ConstitParse because there is no reliable
constituent parser for tweets. As described in §2.4.1, we also show yield and recall
values for NPFST run on input lattices (denoted by 0.01 and 0.001).

(e.g., “Ca2+/calmodulin-dependent protein kinase (CaMK) type IV/Gr”). Finally,

(SimpleNP, K =∞, GreedyFSA) performed much worse than JK because it cannot

extract overlapping or nested spans.

For the WNUT data set, NPFST’s recall was relatively low (91.8%). To test

whether some of its false negatives were due to POS-tagging errors, we used NPFST’s

ability to operate on an input lattice with multiple tags for each position. Specifically,

we constructed an input lattice I using the tags for each position whose posterior

probability was at least t. We experimented with t = 0.01 and t = 0.001. These

values increased recall to 96.2% and 98.3%, respectively, in exchange for only a slightly

higher yield (lower than that of AllNGrams(2)).

36

2.4.2 Computational efficiency

We used ten articles from the BioNLP data set to compare the methods’ pre-

processing and runtime costs. Table 2.2 contains timing results13 for AllNGrams(∞),

ConstitParse, JK, (SimpleNP,K=3, FilterFSA), and (SimpleNP,K=∞, GreedyFSA),

and NPFST. We omit results for (FullNP, K =∞, FilterEnum), (FullNP, K =∞,

FilterFSA), and (FullNP, K=∞, GreedyFSA) because they are too slow to compete

with the other methods.

POS tagging is about twenty times faster than parsing, which is helpful for users

in fields like social science and journalism who may not have high-performance com-

puters. (As described in Section (§1.2) to this work, throughout this work we strive

for efficient computational techniques for lexical corpus analysis.) NPFST is slightly

slower than the simpler pattern-based methods; however, 80% of its time is spent

constructing the input I and traversing the output lattice L, both of which are im-

plemented in Python and could be made faster.

Method Time

AllNGrams(∞) 44.4 ms
ConstitParse 825.3 ms

JK 45.3 ms
(SimpleNP, K=3, FilterFSA) 46.43 ms

(SimpleNP, K=∞, GreedyFSA) 39.34 ms

NPFST 82.2 ms

Table 2.2: Timing results for AllNGrams(∞), ConstitParse, JK, (SimpleNP, K =3,
FilterFSA), (SimpleNP, K =∞, GreedyFSA), and NPFST on ten articles from the
BioNLP data set; AllNGrams(∞) is equivalent to AllNGrams(56) in this context. The
pattern-based methods’ times include POS tagging (37.1 ms), while ConstitParse’s
time includes parsing (748.0 ms).

37

Data Set Method Ranked List

Twitter unigrams snow, #tcot, al, dc, gore
JK al gore’s, snake oil science, snow in dc, mine safety

NPFST al gore’s, snake oil science, 15 months, snow in dc,
*bunch of snake oil science

Old Bailey unigrams jacques, goodridge, rust, prisoner, sawtell
ConsitParse the prisoner, the warden, the draught, the fleet, the house

JK middlesex jury, public house, warrant of attorney, baron perryn, justice grose

NPFST middlesex jury, public house, warrant of attorney, baron perryn,
*middlesex jury before lord loughborough

NYT unigrams will, united, one, government, new
ConstitParse he united states, the government, the agreement, the president, the white house

JK united states, united nations, white house, health care, prime minister

NPFST united states, united nations, white house, health care,
*secretary of state warren christopher

Table 2.3: Ranked lists of representative terms for unigrams, ConstitParse, JK, and
NPFST. For NPSFT, we include the highest-ranked phrase of length four or more
(on its own line, denoted by *) in order to highlight the kinds of longer phrases that
JK is unable to extract. For the Twitter data set, we omit results for ConstitParse
because there is no reliable constituent parser for tweets.

2.4.3 Interpretability

To assess the interpretability of the phrases extracted by each method, we used

three existing datasets: tweets about climate change, written by (manually identified)

climate deniers;14 transcripts from criminal trials at the Old Bailey court in London

during the 18th century;15 and New York Times articles from September, 1993. For

each data set, we extracted phrases using ConstitParse, JK, and NPFST and pro-

duced a list of top terms for each method, ranked by count. To create a top terms

list for the NPFST method, we merged overlapping phrases (e.g. “social security” and

“security act”) using the term-merging algorithm described in the next section. Ta-

13We used Python’s timeit module.

14https://www.crowdflower.com/data/sentiment-analysis-global-warmingclimate-change-2/

15http://www.oldbaileyonline.org/

38

https://www.crowdflower.com/data/sentiment-analysis-global-warmingclimate-change-2/
http://www.oldbaileyonline.org/

ble 2.3 contains these lists, demonstrating that NPFST produces highly interpretable

phrases.16

Additional details: Merging related terms

As described in §2.3.2, NPFST extracts overlapping and nested spans. For ex-

ample, when run on a data set of congressional bills about crime, NPFST extracted

the phrase “omnibus crime control and safe streets act,” as well as the nested phrases

“crime control” and “safe streets act.” Although this behavior is generally desirable,

it can also lead to repetition when returning a list of high-ranking terms.

We therefore outline an high-level algorithm for merging high-ranked terms. The

input to our algorithm is a small ordered list L, ordered by some term-level importance

criterion. (In §2.4.3, L is a ranked list of the most frequent terms in the corpus.) The

output is a list of C top terms, where C is less than the length of L. To merge

nested phrases in L, our algorithm iterates through L, starting with the highest-

ranked term. At each iteration, the algorithm either places some term t in L in a

new (singleton) cluster or adds t to an existing cluster, based on some user-defined

similarity criterion. (In §2.4.3, we add t to some cluster if t is a substring of some t′

in the cluster, or if some t′ in the cluster is a substring of t.) The algorithm stops

iteration once it has generated C clusters. The algorithm then selects a single term to

represent each cluster according to some user-defined criterion. (In §2.4.3, we select

the longest term in each cluster, by character length.) Finally, the algorithm returns

the clusters’ representative terms to return a list of C top terms. By starting with the

highest-ranked term and terminating after forming C clusters, this algorithm avoids

16We excluded domain-specific stopwords and any phrases that contained them. For example,
for the tweets, we excluded phrases that contained “climate” and “warming.” For the Old Bailey
transcripts, we excluded phrases that contained “st.” or “mr.” (e.g., “st. john” or “mr. white”). We
also used a regular expression to exclude apparent abbreviated names (e.g., “b. smith”) and used a
stopword list to exclude dates like “5 of february.” For the New York Times articles, we excluded
phrases that contained “said.”

39

the quadratic cost of comparing all pairs of top terms from the set of extracted lexical

items.

2.5 Conclusion

In this chapter, we present NPFST, a new method that efficiently extracts noun

phrases for inclusion in a corpus lexicon. We then compare our method to several

baselines, demonstrating that our proposed approach has low yield, high recall, and

efficiently extracts interpretable phrases across many different kinds of English text.

NPFST is particularly appropriate for lexical corpus analysis, as the method does not

require the user to undertake specialized configuration or annotation to investigate

new corpora. We apply NPFST for user-facing exploratory lexical analysis in Chapter

6.

Open-source companion software is available at:

https://github.com/slanglab/phrasemachine

40

https://github.com/slanglab/phrasemachine

2.6 Appendix

2.6.1 FullNP Grammar

The following foma grammar defines the rewrite phrase transducer P :

POS tag categories. "Coarse" refer to the Petrov Univeral tag set.
We directly use PTB tags, but for Twitter, we assume they’ve been
preprocessed to coarse tags.
CD is intentionally under both Adj and Noun.
define Adj1 [JJ | JJR | JJS | CD | CoarseADJ];
define Det1 [DT | CoarseDET];
define Prep1 [IN | TO | CoarseADP];
define Adv1 [RB | RBR | RBS | CoarseADV];
Note that Twitter and coarse tags subsume some of this under VERB.
define VerbMod1 [Adv1 | RP | MD | CoarsePRT];
PTB FW goes to CoarseX, but we’re excluding CoarseX since for Gimpel et al.’s
Twitter tags, that’s usually non-constituent-participating things like URLs.
define Noun [NN | NNS | NNP | NNPS | FW | CD | CoarseNOUN | CoarseNUM];
define Verb [VB | VBD | VBG | VBN | VBP | VBZ | CoarseVERB];
define AnyPOS [O | Adj1|Det1|Prep1|Adv1|VerbMod1|Noun|Verb |

CoarseDOT|CoarseADJ|CoarseADP|CoarseADV|CoarseCONJ|CoarseDET|
CoarseNOUN|CoarseNUM|CoarsePRON|CoarsePRT|CoarseVERB|CoarseX

]
define Lparen ["-LRB-" | "-LSB-" | "-LCB-"]; # Twitter doesnt have this.
define Rparen ["-RRB-" | "-RSB-" | "-RCB-"];
Ideally, auxiliary verbs would be VerbMod, but PTB gives them VB* tags.

single-word coordinations
define Adj Adj1 [CC Adj1]*;
define Det Det1 [CC Det1]*;
define Adv Adv1 [CC Adv1]*;
define Prep Prep1 [CC Prep1]*;
define VerbMod VerbMod1 [CC VerbMod1]*;

NP (and thus BaseNP) have to be able to stand on their own. They are not
allowed to start with a determiner, since it’s usually extraneous for our
purposes. But when we want an NP right of something, we need to allow
optional determiners since they’re in between.
define BaseNP [Adj|Noun]* Noun;
define PP Prep+ [Det|Adj]* BaseNP;
define ParenP Lparen AnyPOS^{1,50} Rparen;
define NP1 BaseNP [PP | ParenP]*;
define NP NP1 [CC [Det|Adj]* NP1]*;

regex NP -> START ... END;
write att compiled_fsts/NP.attfoma

41

PART II: HOW TO SHOW
LEXICAL ITEMS IN CONTEXT

CHAPTER 3

RELATIONSHIP SUMMARIZATION

This chapter is adapted from Relational Summarization for Corpus Analysis [139]

and Summarizing Relationships for Interactive Concept Map Browsers [144].

Synopsis

Early paper concordances showed readers how single words were used in con-

text (e.g. Q=“punishment”, Figure 1.1a). But today, computational techniques for

identifying co-occurring lexical items allow for new forms of lexically-focused corpus

investigation (e.g. Termite [63], which shows users co-occurring lexical items, using a

topic model of text [38]). Identifying and presenting related terms suggests a clear

next question: why do any given pair of lexical items often appear together in a

corpus?

To help answer, we define the task of relationship summarization, in which the goal

is to show two co-occurring lexical items in context, in a way that expresses a summary

of their relationship. We then make progress in solving the task by (1) offering

and evaluating a new method for finding natural language sentences which express

relationships between pairs of lexical items and then (2) applying the method towards

constructing summaries for ConceptMap interfaces, which are graphical corpus

overviews designed to help with lexically-oriented corpus exploration (see Section

1.2.1). In automatic evaluation, we show that our method for identifying descriptions

of relationships between lexical items allows for summarization of more than two

43

times more query pairs than baseline relation extractors, while returning measurably

more readable output across heterogenous corpora.

3.1 Introduction

Computational text analysis offers many methods for identifying co-occurring lex-

ical items in a corpus, such as word vectors [236, 198, 87], topic models [38] and

pairwise co-occurrence statistics [262]. These methods allow for new forms of lexically-

focused corpus exploration (e.g. Rookie, from Chapter 6) organized around showing

statistically-related words. Yet identifying such co-occurring terms raises a natural

question: what is the nature of the relationship between items which often appear

together in the text? For instance, why does “Aristide” often co-occur with “liberation

theology” in the Haiti corpus from Chapter 6?

Aristide

Aristide

Gen.
Cedras

UN

Liberation
Theology

rival of
influenced by

relied on

Aristide the Haitian leader … governing philosophy informed by liberation theology

Aristide, as a young Catholic priest … was influenced by the liberation theology

Aristide was earlier expelled from Salesian Order for promoting liberation theology

Clintoncriticizedconcept
map

snippet
box

Figure 3.1: An example interface which uses relationship summarization to help ex-
plain lexical co-occurrence. The user has queried for the entity “Aristide”. The in-
terface shows a ConceptMap (top), displaying short summaries of relationships
between Aristide and other concepts (noun phrases, Chapter 2) which frequently co-
occur with Aristide in the corpus. The user has drilled down to see a more detailed
summary of Aristide’s relationship with liberation theology.

44

This chapter seeks to help users understand such relationships by defining and

taking steps to solve the problem of relationship summarization. For instance,

the ConceptMap browser in Figure 3.1 applies relationship summarization to ex-

plain why the lexical item “Aristide” often co-occurs with the lexical item “Liberation

Theology” in a corpus of New York Times articles mentioning “Haiti” (see §6). Un-

like previous efforts at summarizing relationships [103], in this chapter, we focus on

answering lexical user queries about the connections between two particular terms,

without referencing a knowledge graph [336].1 In order to answer such queries we:

• Formally define the relationship summarization problem (§3.2), which we divide

into two subtasks: the candidate set generation task and the summary

construction task.

• Offer a new method for the candidate set generation task based on naturally-

occurring supervision from news headlines (§3.4). We find that this method

returns more readable output and allows for the summarization of more query

pairs than baseline relation extraction techniques (§3.4.2).

• Offer a new method for the summary construction task, for use in ConceptMap

browsers. Our approach is based on a modeling a new annotated dataset, as-

sembled for this task (§3.5).

• Analyze and discuss the summary construction task for future work (§3.6),

arguing that different summarization techniques are likely most appropriate for

different pairs of lexical query items.

Together, this effort supports new natural language processing methods for corpus

analysis, focused on analyzing relationships between lexical items in text.

1Relational summaries are intended for general-purpose corpus analysis. Existing knowledge
bases do not cover topics discussed in many corpora, such as historical court records [158]. Therefore,
our approach does not assume access to a knowledge base.

45

3.2 Defining relationship summarization

Relationship summarization attempts to summarize the relationship between two

lexical query terms, (t1) and (t2), in a corpus. In this chapter, we assume that (t1)

and (t2) are noun phrases, a syntactic category which encompasses both traditional

named entities like people and places, as well as less concrete, but important, entities

and concepts like “liberation theology” (§2). We sometimes describe (t1) and (t2) as

“lexical query terms” or just “terms” (for brevity). In the terminology of lexical corpus

analysis, (t1) and (t2) are a 2-place query Q, consisting of two NPs.

We define the set of all sentences within a corpus which contain (t1) and (t2) as

the mention set. A relationship summary is a synopsis of the mention set, which

consists of K relation statements, each displayed on its own line. Relation statements

are natural language expressions which begin with (t1) and end with (t2), and occur

at least once as a token span in the corpus. Hence, each relation statement is a span

of tokens within some sentence in the mention set; thus, we say that relationship

summarization displays (t1) and (t2) in context (i.e. a span of token from a sentence

in the corpus).

United States ousted former President Jean-Bertrand Aristide
… Jean-Bertrand Aristide restored to power … under watch of United States … Jean-Bertrand Aristide restored to power under watch of United States

Jean-Bertrand Aristide, left Haiti for the United States

United States ousted former President Jean-Bertrand Aristide … the United States ousted former President Jean-Bertrand Aristide to …

… claimed the United States said that Rev. Jean-Bertrand Aristide wanted to …
… by the United States since the Rev. Jean-Bertrand Aristide argued …
… Jean-Bertrand Aristide, left Haiti for the United States in March …

Candidate set

SummaryMention set

Jean-Bertrand Aristide restored to power under watch of United States

summary
construction

task

candidate set generation task

…

Figure 3.2: A relationship summary is a synopsis of all sentences which mention two
lexical query terms, denoted (t1) and (t2). We refer to such sentences as a mention
set. In the figure above (t1) is Jean-Bertrand Aristide and (t2) isUnited States.
To create a summary first requires identifying all statements in the mention set which
coherently describe some relationship between (t1) and (t2). This candidate set
generation task is a prerequisite for the subsequent summary construction task,
which selects the top K candidates to create a summary. In this work, we offer a
method for the first task and show how the second task will likely require a diversity
of summarization techniques (§3.6).

46

We use specific terminology and notation to describe relation statements. We refer

to the span of tokens in between (t1) and (t2) as a relation phrase, and we use the

notation (t1) r (t2) to denote a relation statement, which consists of (t1), (t2) and

a relation phrase r. In the relation statement, “Aristide fled Haiti”, r is the token

“fled”, (t1) is the token Aristide, and (t2) is the token Haiti.2

Relation statements, which are strings intended for human readers, are similar to

the 3-tuples, “relations”, from prior work on information extraction [25]. However,

in this work, we show that the assumptions underlying the extraction of 3-tuple

“relations” for machines (§3.3) leads to poor performance in summarizing mention

sets for people (§3.4.2).

In this chapter, we present a strictly extractive method for generating relation

statements; each relation statement must be constructed by deleting tokens from

some context sentence in the mention set.3 Some relation statements constructed by

deleting tokens from a sentence make sense; others do not. We refer to any (t1) r

(t2) which sounds well-formed to a human reader as acceptable.4 Table 3.1 shows

examples of acceptable and unacceptable relation statements, constructed by token

deletion.

As in traditional summarization [82], a good relationship summary should (i) be

readable, (ii) include the most important aspects of the relationship between (t1) and

(t2), (iii) avoid redundancy, and (iv) cover the full diversity of topics in the mention

set.

More concretely, relational summaries might be presented with different kinds of

user interfaces. In cases where a user seeks to browse many relationships, a summary

2In this case, Aristide and Haiti are single-word NPs.

3In subsequent studies of relation extractors (§3.4.2), we allow extractors to lightly introduce new
tokens, such as adding the word “is” in relations expressed as noun phrases.

4Linguists sometimes use the term “acceptability” to refer to human judgements of the well-
formedness of utterance. See Sprouse and Schütze [314] for an overview.

47

s1 Aristide
(t1)

fled
r

Haiti
(t2)

in 2004.

s2 For instance Bush
(t1)

told
r

Aristide
(t2)

to leave.

Table 3.1: Two relation statements constructed by deleting tokens from source sen-
tences, s1 and s2. The relation statement extracted from s1 is well-formed; the state-
ment extracted from s2 is not.

might be displayed as a ConceptMap [103], where the two terms are vertexes in a

directed graph and their relationship is printed along the edge label between them. In

cases where user wants to investigate a specific relationship, a relationship summary

might be displayed as a snippet box : a short list of sentences which begin and end

with the two lexical items. Figure 3.1 shows a snippet box and ConceptMap. In a

snippet box, both the number of lines in the summary and the length of the lines in

the summary is longer than in a ConceptMap.

3.2.1 Tasks: candidate set generation and summary construction

In this chapter, we approach the problem of constructing a relationship summary

in two steps. The first step is to identify the set of all possible well-formed relation

statements, called the candidate set and denoted C. We refer to this task of iden-

tifying all acceptable relation statements as the candidate set generation task.

Identifying a candidate set presents a subsequent problem of choosing the best col-

lection of K relation statements from C to create a summary. We refer to this second

step as the summary construction task. In this chapter, we propose and evaluate

methods for the candidate set generation task and the summary construction task.

48

3.3 Related work

Relationship summarization intersects with a diversity of prior work from natural

language processing, including work on relation extraction, summarization and

sentence compression.

Traditionally, the goal of relation extraction is to cull structured facts for knowl-

edge databases from unstructured text. Often, such facts take the form of a 3-tuple

which defines a relationship between two arguments, such as (arg1=“Angela Merkel”,

rel=met with, arg2=“Theresa May”). If extractors do not make use of a predefined

schema, the task of finding relations is called Open Information Extraction (OpenIE).

OpenIE systems5 provide an off-the-shelf method for generating a candidate set for a

relationship summary. Their output can easily be linearized to (t1) r (t2) statements

by simply concatenating the three arguments of the 3-tuple to form a string.

However, we find that the recall of relation extractors is often too low to sum-

marize many mention sets. (We measure this disadvantage extensively in section

§3.4.4.) One reason for their poor performance might be that extractors have goals

and assumptions which are poorly suited to relationship summarization. In relation

extraction, the aim is to find relation strings that recur for many different entity

pairs, which allows such systems to build knowledge databases. For instance, relation

extraction might be used to build tables of world leaders who rel=“met with” other

world leaders in order to analyze international politics. From this perspective, long,

sparse, heterogenous and detailed relation strings which might apply only to a pair of

specific arguments are undesirable, as they make it difficult to find general patterns

across many different entity pairs. For example, the influential ReVerb OpenIE sys-

tem [102] excludes “overly-specific relation phrases” which apply only to two entities.

5There are many available OpenIE systems; Stanovsky and Dagan [316] offer an overview.

49

One way to help ensure that relations generalize across entity pairs is to strive for

arguments which are as short as possible, a common goal in OpenIE [316].6

Our method for generating a candidate set is closer to approaches from sentence

compression [189, 67, 107, 109], an NLP task which seeks to make a source sentence

shorter while preserving the most important information and producing readable

output. We show that our compression-based approach allows us to achieve higher

readability than off-the-shelf relation extractors (§3.4.2).

Sentence compression is often used in traditional extractive summarization to

make more efficient use of a budgeted summary length. We discuss summarization

further later in this Chapter (§3.5, §3.6), where we consider how existing work on

summarization might be applied to the problem of selecting K statements from the

candidate set.

Finally, in this chapter, we describe the collection of a new supervised dataset

for summarizing relationships in ConceptMap interfaces (§3.5). Our dataset has

a different focus from an existing ConceptMap resource from Falke and Gurevych

[103], who seek to create the best overall ConceptMap for a given topic. In our

case, we seek to find the best summary relationship for a given relationship which

a user might wish to investigate. Therefore, unlike Falke and Gurevych [103], our

dataset includes labels for the most readable and informative statement describing

the relationship between any (t1) and (t2) query pair.

3.4 An approach to the candidate set generation task

This section proposes and evaluates a method for candidate set generation.

6Methods from the relation extraction literature which seek to deduce facts from extracted rela-
tions, such as Riedel et al. [284], might also help identify useful summaries in future work. Relations
which imply that other relations are true might make good summaries.

50

Unacceptable statement Auburn police are investigating the death of a Tuskegee woman who died ...
Acceptable statement Drug firm Glenmark has opened its new facility in Argentina which would ...

Table 3.2: Token spans between named entities which are selected at random usually
do not express relationships between the two entities. We sample such spans at
random (top) to generate examples of relation statements that are not well-formed.
Gold compressions from the Filippova and Altun [107] sentence compression corpus
that start and end with a named entitiy serve as examples of well-formed relation
statements (bottom). In this figure, named entites are shown in bold.

3.4.1 Candidate generation using headline-based supervision

Traditionally, relation extraction begins with a fixed notion of what constitutes

a desirable “relation” between two arguments, defined by a predefined schema, a

syntactic template [102], or a collection of seed examples [12]. The relation extraction

task is then to correctly identify spans in which arguments are joined by a relation.

The relationship summarization problem is somewhat different: we begin with a

pair of lexical query terms, (t1) and (t2), and we wish to learn the nature of their

relationship. Therefore, any well-formed statement which describes any relationship

between the two query terms Q is potentially of interest, even if it does not match

prior expectations of what constitutes a relation.

We thus approach the candidate set generation task as a specialized form of sen-

tence compression: we attempt to predict if a sentence from the text can be com-

pressed to a well-formed statement form (t1) r (t2). Table 3.2 shows examples of

sentences which can and cannot be shortened to this form.

We use gold standard sentence–compression pairs from the Filippova and Altun

[107] benchmark sentence compression dataset constructed automatically from the

headlines of news articles to supervise this prediction.7 In this corpus, gold standard

compressions must be acceptable sentences. Therefore, compressions from the dataset

which happen to begin and end with a named entity, once extracted from source

7https://github.com/google-research-datasets/sentence-compression

51

https://github.com/google-research-datasets/sentence-compression

sentences, can serve as positive examples of acceptable relation statements. On the

other hand, randomly chosen spans of the form (t1) r (t2), which happen to arise

in source sentences, are very often not well-formed as standalone sentences. These

randomly sampled spans can serve as examples of unacceptable relation statements.

We then predict well-formedness with supervision from known gold well-formed and

sampled, presumed garbled (not well-formed) examples.8

Filtering the original dataset in this manner9 yields 17,529 positive and 30,266

negative sentences. We then downsample negative training examples to create two

balanced classes of equal size, and use 81% of data for training, 9% for validation and

the remaining 10% for testing.

p(c = 1|s, (t1) r (t2)) (t1) r (t2)

.005 Jean-Bertrand Aristide that the United States

.010 United States since the Rev. Jean-Bertrand Aristide
... ...
.894 United States ousted former President Jean-Bertrand Aristide
.976 Jean-Bertrand Aristide, left Haiti for the United States

Table 3.3: Highest and lowest well-formedness predictions from the set United
States – Jean-Bertrand Aristide

Let p(wf = 1 | s, (t1) r (t2)) indicate the probability that a span of form (t1) r

(t2) extracted from sentence s is well-formed. We model p(c = 1|s, (t1) r (t2)) using

8We manually inspect 100 negative examples, selected at random, and find that roughly 80% are
in fact garbled.

9We also exclude randomly chosen spans which happen to encompass the entire source sentence
and exclude randomly chosen spans where (t1) and (t2) are joined by only edges of type compound
in the dependency graph of the compression (e.g. “Coup leader Cedras ...”). We use CoreNLP
version 3.8 to extract enhanced++ Universal Dependencies [217, 296, 259]. We also filter positive
and negative examples where the span between (t1) and (t2) is longer than J=75 characters, to
simulate a space constraint in a user interface. Finally, we remove all punctuation from the end of
the sentence for both positive and negative examples because all gold positive compressions end in
punctuation marks. For positive examples, if the compressed version of a sentence deletes tokens
between t1 and t2, we replace the span between t1 and t2 in the source sentence with the compression.

52

logistic regression, with features based on the position of part-of-speech tags and

dependency edges in s. Specifically, each sentence in the filtered dataset contains a

span of the form (t1) r (t2). We refer to the tokens in this span as in the compression

because a user would see these tokens in a relation statement compressed from s. Each

sentence also contains spans of tokens which are outside of the compression because

they are deleted from the original source sentence to create a relation statement.

Table 3.2 displays examples.

Our feature vector records the counts of how many times each part-of-speech tag

in the tagset occurs in the compression and also independently records the counts of

how many times each part-of-speech tag occurs out of the compression. We refer to

the count of each part-of-speech tag in the compression and the count of each part-of-

speech tag out of the compression as Φ. We also count the occurrence of each possible

dependency edge label in the compression, and the count of each possible dependency

edge label out of the compression. If a label’s dependent lies in the compression, we

consider the label in the compression.10 We refer to these dependency edge counts as

Ψ. Our final feature vector, Ω, is defined as the concatenation of Ψ and Φ.

Features Accuracy

Φ (pos) .858
Ψ (deps) .892
Ω (deps & pos) .896

Table 3.4: Test accuracies

We implement our model with scikit-learn [272] and manually tune the inverse

regularization constant to the setting, c = 1, which achieves the highest accuracy on

the validation set. For evaluation, a sentence is presumed well-formed if p(c = 1|s,

(t1) r (t2)) > .5. Using the feature vector Ω we achieve an accuracy of .896 on the

10Enhanced dependencies allow for a token to have more than one incoming edge (i.e., multiple
parents). If there is more than one incoming edge, we pick an edge at random.

53

test set. We also present results using only the Ψ and Φ features (Table 3.4) because

reliable dependency parses are not available in some settings [40, 22].

Two limitations of this approach suggest areas for future work. First, in some

cases, the relationship between (t1) and (t2) might not be expressed in the form,

(t1) r (t2), as in “Russia and France signed an agreement”. In order to generate

candidate relation statements it would be helpful to lightly rewrite the sentence, as in

“Russia signed an agreement with France”. Additionally, a sentence might express a

relationship between two lexical items but be too long to display on a ConceptMap

or a snippet box. In these cases, it would be helpful to compress the sentence to

create a more concise relation statement.

3.4.2 Evaluating headline-based candidate set generation

Any relationship summarization system should deliver a high-quality summary

when a user queries for Q, a tuple of two lexical items. Therefore, ideally, a sys-

tem should generate the largest possible candidate set, without selecting any garbled

relation statements as candidates. We thus evaluate our query-focused generation

method in terms of both readability and yield (total relation statements recalled).

Our method generates three times more relation statements than OpenIE systems,

allowing for summarization of two times more query pairs. We also achieve higher

scores in a test of human acceptability judgements (Table 3.5).

3.4.3 Creating a corpus

We evaluate our compression-based method for generating candidate sets against

two relation extractor baselines on two very different corpora: (1) all comments from

the “relationships”11 subreddit from June, 2015 – September, 201712 and (2) a col-

11“relationships” refers to interpersonal relationships

12https://medium.com/@jason_82699/pushshift-reddit-api-md-c2d70745c270

54

https://medium.com/@jason_82699/pushshift-reddit-api-md-c2d70745c270

lection of New York Times articles from 1987 to 2007 which mention the country

“Haiti” [292]. For each corpus, we first find a collection of multi-word phrases using

the phrasemachine package (§2) which extracts all multi-word, noun phrase lexi-

cal items from the corpus. We require all relation statements be less than or equal

to J = 75 characters, which excludes overly verbose relation statements which are

unsuitable for many user interfaces.

3.4.4 A yield evaluation

After extracting all multiword phrases with phrasemachine, we determine the

top 100 noun phrases, by count. We then examine all possible combinations of two

top terms and record which pairs have a non-empty mention set of sentences which

mention two lexical query terms (§3.2). We examine all mention sets because an

investigator should be able to investigate any entity she chooses while analyzing a

corpus.

We compare the yield of our query-focused generation method to off-the-shelf

relation extractors. Such extractors generate 3-tuples from each mention set. Some

but not all of those 3-tuples might have one argument which is equal to (t1) and

another argument which is equal to (t2). Each such 3-tuple can be linearized into a

string of the form (t1) r (t2) which will generate a candidate set.

More precisely, we identify the 3-tuples which an OpenIE system extracts from

a mention set such that exactly one argument from the triple is equal13 to (t1) and

exactly one argument from the triple is equal to (t2). We refer to these 3-tuples

as “matching”. We then count (1) the total number of mention sets which contain

13Note that OpenIE systems might not extract the literal string (t1) or (t2) as arguments. For
instance, if (t1) is “Merkel” the OpenIE system might extract the argument “Angela Merkel”. If some
term and some argument from a relational triple share the same head token in the dependency parse
of the sentence we say that they are equal. Falke and Gurevych [104] employ a similar equality
criterion. We tokenize with CoreNLP. In extremely rare cases, tokenization mismatches between
CoreNLP and ClausIE make it impossible to apply this criterion.

55

at least one matching 3-tuple and (2) the total number matching 3-tuples across all

mention sets. We refer to such counts as the yield of a candidate generation system.

We measure the yield of Stanford OpenIE [12] and ClausIE [85] on the New York

Times and Reddit corpora, and compare each system to our compression-based ap-

proach (§3.4).14 We measure these two relation extractors because Stanford OpenIE

is included with the popular CoreNLP software and ClausIE achieves the highest

recall in two systematic studies of relation extractors [316, 353].

We find that using extractors to generate candidate sets achieves a low yield (total

number of extracted relations), which is undesirable both because it limits the number

of mention sets which may be summarized and generates fewer relation statements

from which to select an optimal relationship summary. Additionally, we find that,

for the great majority of sentences, relation extractors do not extract any relations

between (t1) and (t2). Moreover, for many mention sets, the number of relations

extracted with off-the-shelf systems is often zero. We show these results in Table 3.5.

This suggests that although relation summarization is superficially similar to re-

lation extraction, off-the-shelf extractors are poor tools for creating textual units to

summarize mention sets. Very often, two terms are related to each other in ways

which are simply not captured by relation extractors.

3.4.5 An evaluation with human acceptability judgments

Our compression-based method achieves higher yield than off-the-shelf relation

extractors. However, because all sentences in a mention set include (t1) and (t2), it

is always possible to generate a maximally large candidate set by simply extracting all

spans between (t1) and (t2) from the mention set, regardless of whether such relation

statements are well-formed. We examine if gains in yield come at the expense of

14For our compression-based approach, we count all cases where p(wf = 1 | s, (t1) r (t2)) > .5
as extracting a relation statement.

56

Yield Well-formedness

Total non-empty pairs Total rel. stmts. Mean judgment

Haiti Reddit Haiti Reddit Haiti Reddit
ClauseIE 128 1,121 279 3,949 3.67 3.71
StanfordOIE 443 1,488 972 5,605 3.69 2.97
This work 739 3,766 2,954 21,495 3.94 3.85

Upper bound 2,472 4,496 43,051 123,760 Range: 1-5

Table 3.5: We compare Stanford OpenIE, ClausIE and our headline-based compres-
sion method for the candidate set generation task on two different corpora (Haiti
articles from New York Times, and the Reddit relationships forum) in terms of (1)
how many entity pairs have a non-empty candidate set, (2) how many total relation
statements are generated, and (3) the average human judgment of well-formedness
(§3.4.5). For yield measures, the upper bound on the left shows the total number of
non-empty entity pairs (i.e. how many pairs actually cooccur in at least one sentence,
out of all

(
100
2

)
= 4950 theoretically possible pairs) and the upper bound on the right

shows the total number of sentences in the corpus which mention at least two of the
terms. Our method summarizes more entity pairs across both corpora, and achieves
the highest well-formedness scores among all techniques (§3.4.5).

acceptability by presenting randomly selected relation statements to workers on the

platform Figure Eight15 (formerly Crowdflower) and asking workers to rate the extent

to which they agree or disagree as to whether a relation statement is a “coherent

English sentence” on a scale from 1 to 5. Each relation statement is shown to three

workers in total.16 Our approach is broadly similar to the readability experiments

reported in Filippova and Altun [107].

We solicit 481 total judgements from workers and calculate the mean acceptability

score, by method and corpus (Table 3.5). Our method achieves the highest mean

acceptability score for both corpora.

15https://www.figure-eight.com/

16We use seven test questions to filter out careless or bad faith responses. Workers must answer
70% of test questions correctly to be included in a task’s results. We construct test questions blindly,
without knowledge of the system which generated the relation statement.

57

https://www.figure-eight.com/

Additionally, aggregating judgments across corpora, we observe a statistically sig-

nificant (p=8 x 10−4) difference between our method (µ=3.89, σ=1.38) and Stanford

OpenIE (µ=3.33, σ=1.46) in a two-tailed t-test. Our method also achieves a higher

mean score than ClausIE (µ=3.69, σ=1.44), although the difference is not significant.

3.5 An approach to the summary construction task

After a relationship summarization system generates a candidate set, the next task

is selecting the top K candidate statements for inclusion in a summary. The value

of K will vary by application. Some applications will allow for longer summaries,

while others will need more terse explanations of relationships. Therefore, as a case

study, this section proposes and evaluates an annotated method for the summary

construction task in ConceptMap browsers, described below.

3.5.1 Introducing ConceptMap browsers

ConceptMaps are are visual summaries, structured as directed graphs (Figure

3.1). Important concepts from a corpus are shown as vertexes. Natural language

descriptions of the relationships between concepts are shown as textual labels, along

the edges on the map. Initial attempts to generate English-language ConceptMaps

within natural language processing [103] have focused on creating static diagrams

which summarize collections of documents. However, in interactive settings, users

will want to query relationships with a ConceptMap browser interface, rather than

simply read over fixed output from a summarization system. For instance, in the

ConceptMap browser17 shown in Figure 3.1, a user has queried for Aristide and

the system identifies some co-occurrence relationship between Aristide and Libera-

tion Theology. In this case, the system needs to describe a relationship between

(t1) =“Aristide” and (t2) =“Liberation Theology” at query time, and describe their

17We use the term ConceptMap browsers to refer to interactive concept map interfaces.

58

relationship using a labeled edge in the graph (“Bertrand Aristide influenced by Lib-

eration Theology” in 3.1). Later, we discuss this approach to summary construction

(§3.6).

3.5.2 Annotated summary construction for ConceptMaps

Because there is no existing supervision to help select the best summary statement

from the candidate set for ConceptMaps, we collect a new dataset of annotated

summary statements, which we use to supervise a new model for this task.

We construct our annotated dataset from news stories focusing on the Balkan

Peninsula in the 1990s.18 Political scientists use rich news archives from this complex

period to better understand conflict [295]. We describe our two-step approach to

creating the dataset below.

Step One. For each country, we once again (§3.4.3) use the package phrasemachine

(§2) to identify the 100 highest-frequency noun phrases within articles which men-

tion that country, and examine all pairs of highest-frequency noun phrases which

co-occur at least twice in articles about the country. Then we sample a total of 689

non-empty pairs with more than two extracted candidates. In total there are 5,214

candidate statements across 689 sampled sets.19 On average there are 7.56 statements

per set (σ = 10.6). A sample candidate set is shown in Table 3.6.

18We create our dataset from New York Times articles [292] published from 1990–1999, which
mention at least one country from the Balkans. The countries are: Kosovo, Albania, Serbia, Croa-
tia, Montenegro, Macedonia, Bulgaria, Romania, Moldova and Bosnia. We exclude the former
Yugoslavia; its landmass included other countries on our corpus.

19Additional notes. phrasemachine sometimes returns overlapping phrases, leading to duplicate
sets. We merge duplicates with a heuristic which uses hand-written rules based on (i) token overlap
between concepts and (ii) overlapping sentences between sets. We exclude pairs which are very
obviously unrelated to the Balkans (e.g. “Chinatown” and “Little Italy”). Our annotation budget
determined the number of annotated sets. As in earlier portions of this chapter, we also allow
statements which begin with (t2) and end with (t1); the order of query concepts is important in
interfaces which display ConceptMaps, but beyond the scope of this work. We limit statements
to a maximum of 75 characters.

59

To create the dataset, we first identify candidate summary statements beginning

with (t1) and ending with (t2) which read as a fluid and well-formed sentence when

extracted from naturally-occurring text. As in earlier experiments, we define all spans

between (t1) and (t2) with a probability of well-formedness greater than .5 to be the

candidate set for the pair (t1) and (t2).

A1 A2 A3

c1 General Grachev’s favor is his loyalty to Mr. Yeltsin - W -
c2 Mr. Yeltsin openly accused General Grachev - - -
c3 General Grachev, Defense Minister by dint of his loyalty to Mr. Yeltsin W - W
c4 General Grachev’s plea today will do nothing to help Mr. Yeltsin - - -
c5 Mr. Yeltsin might also appear weak if he had to replace General Grachev B B B

Table 3.6: A candidate set for (t1) = “Mr. Yeltsin” and (t2) = “General
Grachev,” along with decisions from three annotators (A1, A2 and A3) selecting the
best (B) and worse (W) summary statement in the set. All annotators agree that c5
is the best, so α(c5) =3. (During annotation, the order of all sets was randomized).

Step Two. After defining candidate sets we collect annotations to choose the

best summary statement from each candidate set. Our annotation procedure assigns

a score α(c) ∈ {−3,−2, ...+3} to each candidate c = (t1) r (t2) in a candidate set,

which is intended to reflect how well s summarizes a particular relationship. We use

this supervision to train a model to predict α(c). We propose that the statement with

the highest predicted α(c) score should be displayed on a ConceptMap.

Some candidate sets in our dataset are easy for a person to judge and rank.

For instance, it is possible to quickly read over the small set shown in Table 3.6

and identify statements which are clearly better and clearly worse synopses of the

relationship between “General Grachev” and “Mr. Yeltsin”.

However, other candidate sets in our dataset are too large and too complex to

read and analyze quickly. (The largest candidate set in our dataset contains 143

statements in total). We accommodate both large and small sets with a “low-context”

[103] annotation technique; we split candidate sets into one or more subsets, and ask

60

annotators to rank the best and worst summary statements in each subset. Then

we aggregate these local judgements about the best and worst candidates within

each subset to create a global score. This global score, α(c), attempts to capture the

overall quality of a given a candidate summary statement c. This method of soliciting

local judgements about subsets and then aggregating into an overall score is known

as Best-Worst Scaling [206]; it has been shown to make more efficient use of human

judgements for a natural language task than traditional techniques [186].

The annotation process assigns a score α(c) ∈ {−3,−2,−1, 0, 1, 2, 3} to each c

in each candidate set. A higher value of α(c) indicates greater agreement among

annotators that a given c should summarize the candidate set.

3.5.3 Annotation: Additional details

We present all candidate sets to three different non-native English speakers, hired

via a professional annotation firm. All annotators completed graduate work in either

linguistics or the humanities, and were based in the Middle East. For each annotator,

we divide each candidate set into J random tuples (a tuple consists of up to eight

candidate statements), and ask the annotator to choose the best and worst from each

tuple. Annotators are instructed that the best statement should be the one that

both sounds the most natural and that most helps them understand the history and

politics of the Balkan region. They are instructed that the most unnatural sounding

and least informative statement should be chosen as worst. In total, each candidate

statement is shown to each annotator exactly once.20 After annotators have judged

each individual set, we aggregate with Orme [264]’s counting formula: we set the score

20Unlike in traditional Best-Worst annotation, the number of candidates in each tuple may vary
depending on the size of the candidate set. If a candidate set has a cardinality of less than eight,
the size of the tuple is set to the size of the candidate set; otherwise the size of a tuple is capped at
eight. We make this choice because many candidate sets have a small cardinality, and it does not
make sense to break up small sets (e.g. 5 or 6 candidates) into very small tuples.

61

α(c) ∈ {−3,−2, . . . ,+3} of each summary statement c to be the number of times c

was chosen as the best, minus the number of times it was chosen as the worst.

Following prior work [186], we evaluate inter-annotator agreement via split-half

reliability. For each candidate set, we randomly split annotators into two groups,

and compute the score for each c using each group of annotators. Then we compute

the Spearman correlation (ρ) between the two sets of scores, yielding an average of

ρ = 0.495 across 1000 random splits.

3.5.4 Modeling annotated data

The previous section describes a procedure for assigning a score, α(c) for each c

in our dataset. We use these scores to train a model, p(α(c)|s). During modeling,

we divide the dataset into training and test sets at the entity level, ensuring that

there are no relationships between concepts in the training and test set. Ensuring

that there are no relationships shared across sets is important because a model might

use knowledge about relationships gleaned from training data (e.g. “Milosevic led

Serbia”) to make inferences about relationships in the test data (e.g. “Milosevic led

the Serbian Socialist party”). 627 candidates are used for training; the remaining 62

are for testing.21

We model p(α(c)|s) using ordinal regression, implemented with the MORD pack-

age [273]. We use unigram features, morphological features, part-of-speech-tag fea-

tures and binary features (e.g. s includes punctuation mark) to represent the candi-

date statement. We also include p(wf = 1 | s, (t1) r (t2)) as a feature in our model,

along with the token length of a summary statement. We tune MORD’s regulariza-

21To implement the train–test split, we form an initial provisional division of concepts into two
sets. For all relationships between concepts that cross the two sets, we move the entity from the
test set to the training set. All scored summary statements between concepts in the training set are
used for training; the remainder are for test. We manually tune the size of the initial split so that
10% of concepts are in the final test set.

62

tion penalty parameter to maximize 5-fold, cross-validated Spearman’s ρ using the

training set.22

3.5.5 Model evaluation

We use the test set to measure the extent to which our model’s predictions cor-

relate with gold scores, achieving a Spearman’s ρ = 0.443 between our model’s pre-

dictions and the gold scores. This is close to the ρ = 0.495 computed to measure

inter-annotator agreement (see §3.5.3).

We instructed annotators to select summary statements that were both infor-

mative and grammatically wellformed. We use the probability of grammatical well-

formedness p(wf = 1 | s, (t1) r (t2)) as a feature in our model. This measure appears

to partially reflect annotator judgements: there is a Spearman’s ρ = 0.154 between

the two metrics across the dataset. Research into human perceptions of grammatical

well-formedness [314, 341] could be applied to make better predictions in the future.

Model Spearman’s ρ

p(α(c)|s) (Ordinal regression) 0.443
Logistic regression 0.304
Inter-annotator agreement 0.495

Table 3.7: Spearman’s ρ for our ordinal regression model p(α(c)|s), compared both
to the inter-annotator agreement and a simpler logistic regression model.

Predicting annotator perceptions of informativeness is more challenging. For in-

stance, annotators preferred “Mr. Milosevic has been formally charged with war

crimes” (α(c) = 3) to “President Slobodan Milosevic may be indicted for war crimes”

(α(c) = 1). The former expresses a completed action which arguably entails the lat-

22We examine 10i for i = −3,−2..2, 3 and select 101for the final value of the hyperparameter. Ad-
ditionally, the MORD API implements several variants of ordinal regression. We use the LogisticSE
variant because it achieves the highest cross-validated ρ on the training set.

63

ter, hypothetical action. How to best model [42], formalize [210] and even study [134]

such complex semantic relationships is an unsolved problem in NLP.

We use the number of tokens in a summary statement (subtracting out the length

of query concepts) as a feature. We observe a Spearman’s ρ = .337 between α(c) and

the token length of s. We hypothesize that this feature might serve as a very coarse

proxy for informativeness: although not instructed to do so, annotators might choose

longer statements ahead of shorter statements because they express more about the

Balkans.

3.6 A discussion and analysis of the summary construction

task

The previous section describes a the collection and modeling of a new annotated

resource for selecting statements from the candidate set to summarize relationships.

Our approach adopts the basic supervised paradigm underlying much current work

on summarization [156, 132]. We collect human judgements of salience and well-

formedness (in our case, judgements are expressed via Best-Worst Scaling), and then

train a model to best replicate such judgements. Results are mixed. We find that

shallow cues like statement length and grammatical well-formedness are helpful for

identifying good summary statements, but also that representing deeper semantic re-

lationships (e.g. entailment) remains an ongoing challenge for automatically building

ConceptMaps. Thus in this section, we analyze the summary construction task

64

more deeply, by analyzing mention sets and articulating how their properties might

affect future supervised and unsupervised approaches to summary construction23

To begin, we observe that mention sets are inherently heterogenous. Some de-

scribe a single, temporally-focused event. Others describe a consistent, unchanging

relationship. Still others describe intricate sagas unfolding across time. For instance,

within the Haiti corpus, one mention set describes events in 1994 when “General Ce-

dras fled to the Dominican Republic”. This mention set is quite different from a set

of sentences in the Reddit corpus in which users assert that “video games are a deal

breaker” in interpersonal relationships. Figure 3.6 displays hand-crafted summarizes

for these mention sets.

In general, the properties which guide how a mention set should be summarized

are its size, topical diversity, temporal focus and the degree to which the set

expresses states or events. In this section, we use the notation (t1) – (t2) to refer

to a mention set. For instance, New York – London would refer to all sentences from

a corpus which contain the names of both of these cities.

Size. In general, because many word types in a corpus occur infrequently [357],

the number of sentences which mention (t1) and (t2) is often small. For instance,

of the 320,670 total sentences in the Haiti corpus, only 160 mention “Jean-Bertrand

Aristide” and the “United States,” which is nonetheless among the larger mention

sets in the corpus. In general, larger sets often describe complex and noteworthy

relationships, which are more difficult to summarize (Figure 3.5). Note that although

individual mention sets are often small enough to simply read (unlike in some multi-

23Because such supervision is costly and difficult to collect, carries risks of annotation artifacts
[134] and might transfer poorly to new domains, future work might explore if other forms of task-
based supervision and task-based evaluation [176] may be better suited to the specialized task
of automatic ConceptMap summarization. For instance, instead of asking a human to identify
better and worse summary statements, we might examine how well a user (or model) presented with
summary statement s can answer if other summary statements s′ are true or false [101]. If some s
helps users identify many other true s′, then s is (potentially) a good summary.

65

Figure 3.3: Mention sets are heterogeneous, requiring a diversity of summarization techniques. In
this work, we analyze the diversity of mention sets towards future attempts that the relationship
summarization problem.

video games and I don’t want that to be a deal breaker
video games was a deal breaker
video games is a deal breaker

Figure 3.4: A hand-crafted summary for the mention set video games–deal breaker. The
mention set contains many stative descriptions of the relationships between the two terms, indicating
that a summary might focus on presenting fixed relationships rather than evolving events.

General Cedras ... last week fled to the Dominican Republic
Dominican Republic ... will not permit permanent residence by General Cedras

Figure 3.5: A hand-crafted summary for the mention set General Cedras–Dominican Repub-
lic. The set has a high number of mentions which all fall within a several month span, hinting at a
relationship focused on a particular event at a particular point in time.

United States supports the restoration of ... Jean-Bertrand Aristide (Aug. 1994)

Jean-Bertrand Aristide was restored ... a year ago under the watch of United States (Oct. 1995)

United States ... withheld contributions, hoping to spur President Jean-Bertrand Aristide (Sep. 2002)

Jean-Bertrand Aristide asserted ... he had been driven from power by the United States (Mar. 2004)

Figure 3.6: A hand-crafted summary for the mention set Jean-Bertrand Aristide–United
States, one of the largest in the Haiti corpus. The mention set describes a complex, shifting
relationship; at different times over several decades, Aristide was a beneficiary, opponent and critic
of the United States.

document summarization settings), summarization of mention sets is still quite useful,

as practitioners will often seek to understand many different relationships as they

investigate a new topic (e.g. Figure 3.1).

Topical diversity. In general, some mention sets are focused on a single topic,

others are more diffuse. For instance, after losing power in a second, 2004 coup Haiti’s

Jean Bertrand Aristide was forced into exile in South Africa. The mention set for Jean

Bertrand Aristide – South Africa contains twelve sentences which (mostly, but not

exclusively) describe Aristide’s removal from power and life in exile in South Africa

from 2004 onwards. Detecting and including diverse or complex topics is a classic

aim of traditional multi document summarization (e.g. Lin and Hovy [200]), which

might be applied in this new setting.

66

Temporal focus. In timestamped corpora such as news archives or social media

posts, some mention sets are focused within certain time periods; others are spread

across the span of the corpus. For instance, in the Haiti corpus, General Cedras –

Dominican Republic are only mentioned together during a few months of 1994 (Figure

3.4). A good summary for this mention set should describe a central event from this

time period: when General Cedras fled to the Dominican Republic. On the other

hand, Jean-Bertrand Aristide – United States are mentioned together in 67 months

in the corpus, covering a number of important events spread across decades (Figure

3.5). For this mention set, a narrow summary focusing on a single event would be

inappropriate.

Many existing methods specialize in detecting [54], tracking [6] and summarizing

evolving topics in timestamped documents. Some systems focus specifically on sum-

marizing event “spikes”: both in news (e.g. Alfonseca et al. [5]) and on social media

(e.g. Nichols et al. [254]). In some cases, the event described in a mention set will

even match the loose form of a common narrative template [53], such as when (t1)

and (t2) are codefendants at a trial.

Mention sets which are more temporally diffuse are also more challenging. Update

summarization refers to summarizing changes introduced by new documents, possibly

from a high volume stream [180]. This form of summarization is important in cases

when a relationship shifts or changes through time, as in figure 3.5.

States or events. Mention sets may be coarsely divided into cases where the

set expresses a stable state or property of the world in the eyes of the author (e.g.

“England is a close ally of the US” or “video games are a deal breaker”) and cases

where the relation statement expresses a change or event (e.g. “Gen. Cedras fled to the

Dominican Republic” or “dad left mom”). In many interesting cases, the mention set

contains a mix of stative and eventive relation statements which express a narrative,

67

such as “America is an ally of South Korea” and “America sent a destroyer to South

Korea”.

Defining [281], extracting [4] and determining relationships between events [164]

is a challenging research area. But a better understanding of states and events would

improve future work. For instance, if a summary includes the event “Jolie divorced

Pitt”, it does not need to include the stative relation phrase “Jolie was married to

Pitt”. To our knowledge, there is no prior work which considers how fine-grained re-

lations between states and events might be employed for summarization. MacCartney

and Manning [210] offer a framework for enumerating possible relationships between

propositions, which might serve as a useful starting place.

3.7 Conclusion

This chapter presents a new NLP method for summarizing relationships between

lexical items, which can help explain why particular lexical items co-occur in text.

We show that our method can summarize more query pairs than baseline relation

extraction systems, and analyze one application of our approach in ConceptMap

interfaces. In Chapter 7, we also show how relationship summarization can help in a

user-facing system designed for historians and archivists.

68

CHAPTER 4

TEXT SIMPLIFICATION (CLAUSE DELETION)

This chapter is adapted from a preprint entitled Human acceptability judgements

for extractive sentence compression [143].

Synopsis

In query-focused lexical corpus analysis (see Section 1.2.1), the user investigates a

particular lexical item (or group of lexical items) in a body of text. But because the

user’s query Q may be mentioned many times within a corpus, reading all mentions of

Q within long passages may be burdensome. We thus propose applying text simplifi-

cation methods from natural language processing to help shorten sentences containing

user query words, to speed the review of lexical items in context. Specifically, in this

chapter, we consider how to simplify English sentences by collecting and modeling

human judgments of simplified text, and then use a model of such judgments in a

new sentence simplification system. Later, we apply findings from this effort in the

ClioQuery interface (Chapter 7).

69

4.1 Introduction

In natural language processing, sentence compression refers to the task of auto-

matically shortening a longer sentence [189, 67, 109]. This technique has obvious

applications in lexical corpus analysis, because it reduces the amount of text a user

must read to review mentions of a lexical query Q in a corpus. Therefore, in this

chapter, we investigate how to shorten sentences containing Q. Specifically, we col-

lect a crowdsourced dataset of human judgments describing the well-formedness of

shortened sentences (§4.4), present and evaluate a model of such human judgments

(§4.5), and use this model in a new sentence compression technique (§4.6), which

predicts the well-formedness of a shortening. We then show how this approach allows

a practitioner to identify well-formed shortenings which include Q. Later, we apply

a version of our clause-deletion approach in the ClioQuery system (Chapter 7).

4.2 Related work

Researchers have been studying extractive sentence compression for over two

decades [189, 67, 109]. Recent approaches are often based on a large compression

corpus,1 which was automatically constructed by using news headlines to identify

“gold standard” shortenings [107]. State-of-the-art models trained on this dataset

[109, 11, 339] can reproduce gold compressions (i.e. perfect token-for-token match)

with accuracy higher than 30%.

However, learning from parallel corpus supervision has clear downsides for lex-

ical corpus analysis. Parallel corpus supervision implicitly assumes a given rate of

compression, which may not be appropriate for a given application (e.g. maybe a

user needs very short compressions), and encodes assumptions about the distribution

1https://github.com/google-research-datasets/sentence-compression

70

https://github.com/google-research-datasets/sentence-compression

of Q within sentences (e.g. is Q usually the subject, does it appear in embedded

clauses?).

Therefore, in this Chapter, we investigate the use of human acceptability judge-

ments, as a new and more flexible form of supervision for the sentence compression

task. Our approach is based on prior research which seeks to model human judgements

of the well-formedness of English sentences [154, 314, 195, 341]. However, unlike more

general studies, our work is strictly concerned with human perceptions of shortened

sentences (for application in lexical corpus analysis).2 Unlike prior work, our study

also solicits human judgements of shortenings from naturally-occurring news text,

instead of sentences drawn from syntax textbooks [315, 341] or created via automatic

translation [195].

We note that our effort focuses strictly on anticipating the well-formedness of

extractive compressions, rather than identifying compressions which contradict or

distort the meaning of the original sentence. Identifying which compressions do not

modify the meaning of source sentences is closely connected to the unsolved textual

entailment problem, a recent area of focus in computational semantics [42, 271, 227].

In the future, we hope to apply this evolving research to the compression task. Some

current compression methods use simple hand-written rules to guard against changes

in meaning [67], or syntactic mistakes [175].

Finally, following much prior work, this study approaches sentence compression

as a purely extractive task. Closely related work on abstractive compression [68, 291,

214] and sentence simplification [355, 347] seeks to shorten sentences via paraphrases

or reordering of words. Despite superficial similarity, extractive methods typically

use different datasets, different evaluation metrics and different modeling techniques.

2We compare our model to Warstadt et al. [341] in §4.5.

71

Sentence Pakistan launched a search for its missing ambassador to
Afghanistan on Tuesday, a day after he disappeared in a Taliban
area.

Headline Pakistan searches for missing ambassador.

“Gold” compression Pakistan launched a search for its missing ambassador.

Alternate 1
Pakistan launched a search for its missing ambassador to
Afghanistan on Tuesday.
(A(c) = -1.367, Brevity = 84 characters max., Query = 1)

Alternate 2
Pakistan launched search Tuesday.
(A(c) = -6.144, Brevity = 59 characters max., Query = 0)

Table 4.1: A sentence, headline and “gold compression” from a standard sentence
compression dataset [107], along with two alternate compressions constructed with
a system supervised with human acceptability judgements (§4.6). The alternate
compressions reflect different Brevity requirements and different adherence to an
application-specific, lexical Query criterion. In this case, the brevity requirement is
expressed with a hard maximum character constraint and the importance criterion is
expressed with a binary score, indicating if a sentence includes a user’s query term
Q=“Afghanistan”. We use our A(c) ∈ (−∞, 0] metric (§4.6) to measure the Accept-
ability of each compression; a higher score indicates a compression is more likely
to be well-formed. Alternate 2 is neither entirely garbled nor perfectly well-formed,
reflecting the gradient-based nature of acceptability (§4.4).

4.3 Compression via subtree deletion

Any sentence compression technique requires a framework for generating possible

shortenings of a sentence, s. (In §5 we denote each input sentence with an uppercase S

to emphasize that S is a set. In this chapter, we use a lower case s, because s refers to

a dependency parse graph, rather than a vertex set.) We generate compressions with

a subtree deletion approach, based on prior work [189, 108, 107]. To generate a single

compression (from among all possible compressions) we begin with a dependency

parse of s.3 Then, at each timestep, we prune a single subtree from the parse. AfterM

subtrees are removed from the parse (one at a time, over M timesteps) the remaining

3We use Universal Dependency [259] trees (v1), parsed using CoreNLP [217].

72

vertexes are linearized in their original order. Formally pruning a subtree refers to

removing a vertex and all of its descendants from a dependency tree; pruning singleton

subtrees (one vertex) is permitted.

We find that is possible to construct 88.2% of the gold compressions in the training

set of a standard corpus [107] by only pruning subtrees. Therefore, we only examine

prune-based compression in this work.4

4.4 Human acceptability judgements for sentence compression

Our data collection methodology follows extensive research into human judge-

ments of linguistic well-formedness [314]. Such work has shown that non-expert par-

ticipants offer consistent judgements of natural and unnatural sounding sentences with

high test-retest reliability [192], across different data collection techniques [14, 315].

We apply this research to sentence compression, with confidence that our results

reflect genuine human perceptions of shortened sentences because:

1. We carefully screen out many workers who offer judgements that violate well-

known properties of English syntax, such as workers who approve deletion of

objects from obligatory transitive verbs.

2. We observe that workers approve and disapprove of classes of sentences that

English speakers would categorize as “grammatical” and “ungrammatical,” re-

spectively. For instance, workers rarely endorse deletion of nominal subjects,

and often endorse deletion of temporal modifiers.

3. Annotator agreement in our dataset is similar to agreement in prior, compre-

hensive studies of acceptability judgments (§4.4.4).

4Extracting nested subclauses from source sentences is not possible with prune-only methods,
because the root node of the compression must be the same as the root node of the original sentence.
We plan to address this in future work.

73

The Appendix (§4.8) details our screening procedures, and discusses classes of

accepted and rejected compressions in our dataset.

4.4.1 Methodology: measuring well-formedness

Our study adopts a standard distinction between acceptability and grammatical-

ity [61, 297]. Grammaticality is a binary and theoretical notion, used to characterize

whether a sentence is or is not generable under a grammatical model. Acceptability is

a measurement an individual’s perception of the well-formedness of a sentence. Em-

pirical studies have shown acceptability to be a gradient-based phenomenon, affected

by a range of factors including plausibility, syntactic well-formedness, and frequency

[314]. Based on this work, we expect that workers will have graded (not binary)

perceptions of the well-formedness of compressions shown in our task.

Although acceptability is gradient-based, we nevertheless measure worker percep-

tions by collecting binary judgements of well-formedness. Earlier studies [14, 315, 192]

have shown that such binary measurements of acceptability correlate strongly with ex-

plicitly gradient collection techniques, such as Likert scales (Figure 4.1). We chose to

collect binary judgements instead of graded judgments because (1) binary judgments

avoid ambiguity in how participants interpret a gradient scale (2) binary judgements

allowed us to write clear screener questions to block unreliable crowdworkers from

the task and (3) binary judgements allowed us to apply binary logistic modeling to

directly predict observable worker behavior.

4.4.2 Data collection prompt

We show crowdworkers on Figure Eight5 a naturally-occurring sentence, along

with a proposed compression of that same sentence, generated by executing a single

prune operation on the sentence’s dependency tree. We then ask a binary question:

5https://www.figure-eight.com/.

74

https://www.figure-eight.com/

0
25
50
75

no yes

co
un
t

Binary

0
10
20
30

1 2 3 4 5 6 7

co
un
t

Likert

Figure 4.1: Binary judgements and graded (Likert) judgements from Sprouse and
Almeida [315] for the slightly-awkward sentence, “They suspected and we believed
Peter would visit the hospital”. Bader and Häussler [14] describe correlations between
such measurement techniques.

can the longer sentence be shortened to the shorter sentence? Our prompt is shown

in Figure 4.2. We instruct workers to say yes if the shorter sentence “sounds good” or

“sounds like something a person would say,” following verbiage for the acceptability

task [314].

Because we designed our task to follow typical acceptability prompts, we expect

that workers completing the task evaluated the well-formedness of each compressed

sentence, and then answered yes and if they deemed it acceptable.

We instruct workers to say yes if a compression sounds good, even if it changes

the meaning of a sentence. While practitioners performing lexical corpus analysis will

need to identify shortenings which are both syntactically well-formed and which do

not modify the meaning of a sentence, this work focuses strictly on identifying well-

formed compressions. In the future, we plan to apply active research in semantics

(§4.2) to identify disqualifying changes in meaning.

4.4.3 Dataset details

We generate 10,128 sentence–compression pairs from a freely-distributable corpus

of web news [354]. Each source sentence s is chosen at random, and each compression

c is produced by a single, randomly-chosen prune operation on s. Our data thus

reflects the natural distribution of dependency types in the corpus.

75

Figure 4.2: Prompt to collect human judgements of acceptability for sentence com-
pression. Workers are instructed to answer yes if the shorter sentence “sounds good”
or “sounds like something a person would say.”

N judgements (train) 6010 (4522 sents.)
N judgements (test) 640 (486 sents.)
class balance 64.2%/35.8% (no/yes)
overall compression rate µ=0.867 σ=0.174

Table 4.2: Corpus statistics.

We present each (s, c) pair to 3 or more workers,6 then conservatively exclude many

judgements from workers who are revealed to be inattentive or careless (see Appendix

4.8), in order to be certain that worker disagreements in our dataset reflect genuine

perceptions of well-formedness. We then divide filtered data into a training and test

set by (s, c) pair, so that our model does not use a train-time judgement about (s, c)

from worker k to predict a test-time judgement about (s, c) from worker k′. Table 4.2

presents dataset statistics.7 Our organization does not require institutional approval

for crowdsourcing.

4.4.4 Measuring inter-annotator agreement

There are at least two sources of inter-annotator disagreement which could arise in

our data. First, in cases when a compression is neither entirely garbled nor perfectly

6FigureEight will sometimes solicit additional judgements automatically.

7Note that we use a character-based Filippova et al. [109] rather than token-based [245] definition
of compression rate.

76

well formed, previous empirical studies [315, 192] suggest that annotators will likely

disagree. (See Figure 4.1 and §4.4.1). Second, we suspect that different individuals

set different thresholds on how acceptable a sentence must be before they give a “yes”

response: a compression that one person rates as acceptable might be rated by the

next as unacceptable, even if they have the same impression of the compression’s

acceptability. Such between-annotator variability might represent a form of response

bias, which is common in psychological experiments [211, 212]. We attempt to control

for such bias by including a worker ID feature in our model (§4.5.1).

To evaluate the extent of such disagreement, and to compare with other work, we

measure inter-annotator agreement using Fleiss’ kappa [113], computing a κ = .294

on the entire filtered dataset.8 We observe a similar rate of agreement (κ = .323) in a

comprehensive study of acceptability judgements [315].9 Our κ is lower than typical

in standard annotation paradigms in NLP, which often attempt to assign instances

to hard classes, rather than measure graded phenomena.

4.5 Intrinsic task: Modeling single operation compressions

We train a binary logistic regression model, p(Yk = 1|W ,x) to predict if worker

k will endorse a deletion transforming s to c, where x = φ(s, c, k) is a feature vector

described in §4.5.1. We then show how the intrinsic task of modeling and controlling

for individual worker behavior can be used for the extrinsic task (§4.6) of predicting

the Acceptability of multi-operation compressions, without reference to worker

information.

8See Appendix (§4.8) for details of Fleiss κ for crowdsourcing.

9We compute this number using publicly released data from the YN study.

77

4.5.1 Model features

The major features in our model are: (i) language model features, (ii) dependency

type features, (iii) worker ID features, (iv) features reflecting properties of the edit

from s to c and (v) interaction features. We discuss each below.

Language model features. Our model builds upon earlier work examining the

relationship between language modeling and acceptability judgements. In a prior

study, Lau et al. [195] define several functions which normalize predictions from a

language model by token length and by word choice; then test which functions best

align with human acceptability judgements. We use their Norm LP function in our

model, defined as:

Norm LP(ξ) , − log pm(ξ)
log pu(ξ)

(4.1)

where ξ is a sentence, pm(ξ) is the probability of ξ given by a language model and

pu(ξ) is the unigram probability of the words in ξ.

We use Norm LP as a part of two features in our approach. One real-valued

feature records the probability of a compression computed by Norm LP(c). Another

binary feature computes Norm LP(s) - Norm LP(c) > 0. The test set performance

of these language model (LM) features is shown in Table 4.3. The appendix further

describes our implementation of Norm LP.

Dependency type features. We use the dependency type governing the subtree

pruned from s to predict the acceptability of c. This is because workers are more

likely to endorse deletion of certain dependency types. For instance, workers will

often endorse deletion of temporal modifiers, and often reject deletion of nominal

subjects.

Worker ID features. We also include a feature indicating which of the workers

in our study submitted a particular judgement for a given (s, c) pair. We include this

78

feature because we observe that different workers have greater or lesser tolerance for

more and less awkward compressions.10

Including the worker ID feature allows our model to partially account for an indi-

vidual worker’s judgement based on their overall endorsement threshold, and partially

account for a worker’s judgement based on the linguistic properties of the edit. The

feature thus controls for variability in each worker’s baseline propensity to answer

yes. Because real applications will not have access to worker-specific information,

we do not use the worker ID feature in evaluating our model and dataset for use in

practical compression systems (§4.6). All workers in the test set submit judgements

in the training set.

Edit property features. We also include several features which register prop-

erties of an edit, such as features which indicate if an operation removes tokens from

the start of the sentence, removes tokens from the end of a sentence, or removes to-

kens which follow a punctuation mark. We include a feature that indicates if a given

operation breaks a collocation (e.g. “He hit a home run”). The appendix details our

collocation-detection technique.

Interaction features. Finally, we include seventeen interaction features formed

by crossing exit property features with particular dependency types. For instance,

we include a feature which records if a prune of a conj−−→ removes a token following a

punctuation mark.

4.5.2 Model evaluation

We compare our model of individual worker judgements to simpler approaches

which use fewer features (Table 4.3), including an approach which uses only language

model information [195] to predict acceptability. We compute the test set accuracy of

10More formally, we define a given worker’s deletion endorsement rate as the number of times a
worker answers yes, divided by their total judgements. We observe a roughly normal distribution
(µ = .402 , σ = .216) of worker deletion endorsement rates across the dataset.

79

Hard classification (t=0.5) Ranking

Model Accuracy Fleiss κ ROC AUC (p)

CoLA 0.622 -0.210 0.590 (< .001)

language model (LM) 0.623 -0.232 0.583 (< .001)

+ dependencies 0.664 0.124 0.646 (< .001)

+ worker ID 0.695 0.232 0.746 (< .001)

full , p(Yk = 1|W ,x) 0.742 0.400 0.807
- dependencies 0.731 0.368 0.797 (0.073)

- worker ID 0.667 0.170 0.691 (< .001)

worker – worker agreement 0.636∗ 0.270 —
Sprouse and Almeida [315] — 0.323 —

Table 4.3: Test set accuracy, Fleiss’ κ and ROC AUC scores for six models, trained
on the single-prune dataset (§4.4), as well as scores for a model trained on the CoLA
dataset [341]. The simplest model uses only language modeling (LM) features. We
add dependency type (+ dependencies) and worker ID (+ worker IDs) information
to this simple model. We also remove dependency information (- dependencies) and
worker information (- worker ID) from the full model. The full model achieves the
highest test set AUC; p values beside each smaller AUC score show the probability
that the full model’s gains over the smaller AUC score occurs by chance. We also
compute κ for each model by calculating the observed and pairwise agreement rates
[113] for judgements submitted by the crowdworker and “judgements” submitted by
the model. Models which can account for worker effects achieve higher accuracies
than the observed agreement rate among workers (0.636∗), leading to higher κ than
for worker–worker pairs.

each approach in predicting binary judgements from individual workers, which allows

for comparison with agreement rates between workers. However, because accept-

ability is a gradient-based phenomenon (§4.4), we also evaluate without an explicit

decision threshold via the area under the receiver operating characteristic curve (ROC

AUC), which measures the extent to which an approach ranks good deletions over bad

deletions. ROC AUC thus measures how well predicted probabilities of binary pos-

itive judgements correlate with human perceptions of well-formedness. Other work

which solicits gradient-based judgements instead of binary judgements evaluates with

Pearson correlation [195]; ROC AUC is a close variant of the Kendall ranking corre-

80

lation [252]. Our full model also achieves a higher AUC than approaches that remove

features from the model. We use bootstrap sampling [34] to test the significance of

AUC gains (Table 4.3); p values reflect the probability that the difference in AUC

between the full model and the simpler model occurs by chance.

The probability that two workers, chosen at random, will agree that a given s in

the test set may be shortened to a given c in the test set is 63.6%. We hypothesize

that the full model’s accuracy of 74.2% is higher than the observed agreement rate

between workers because the full model is better able to predict if worker k will

endorse an individual deletion.

We also compare our full model to a baseline neural acceptability predictor trained

on CoLA [341], a corpus of grammatical and ungrammatical sentences drawn from

syntax textbooks. Using a pretrained model, we predict the probability that each

source sentence and each compression is well formed, denoted CoLA(s) and CoLA(c).

We use these predictions to define four features: CoLA(c), log CoLA(c), CoLA(s) -

CoLA(c), and log CoLA(s) - log CoLA(c). We show the performance of this model in

Table 4.3. CoLA’s performance for extractive compression results warrants future ex-

amination: large corpora designed for neural methods sometimes contain limitations

which are not initially understood [58, 173, 42].

4.6 Extrinsic task: Modeling multi-operation compressions

In this chapter, we argue that a single sentence may be compressed in many

ways; a user performing lexical corpus analysis may wish to see any lexical item Q in

context, regardless of whether it occurs in the “gold standard” compression. Thus, in

the remainder of this study, we examine how our clause-based sentence compression

framework (§4.3), supervised with human acceptability judgements (§4.5), may be

used to provide Acceptability scores which align with human perceptions of well-

81

formedness. Such scores could be used as a component of many different practical

sentence compression systems, including a method described in §4.6.3.

4.6.1 Defining multi-operation acceptability scores

We consider any function which maps a compression to some real number reflecting

its well-formedness to be an Acceptability score. In §4.5, we present a model,

p(Yk = 1|W ,x), which attempts to predict if worker k will judge a single-operation

compression to be well-formed. If we execute a chain of M such operations, and

assume that each operation’s effect on acceptability is independent, we can model the

probability that M prune operations will result in an acceptable compression with∏M
i p(Yk = 1|W ,xi), which is equal to the chance that a person will endorse each of

the M deletions. We test this model with a function that expresses the probability

that all operations are acceptable:

A(c) ,
M∑
i=1

log p(Y = 1|W ,xi) (4.2)

where each xi are features reflecting the nature of the prune operations which shortens

ci to ci+1 in the chain of operations, and where p(Y = 1|W ,xi) is the predicted

probability of deletion endorsement under our full model. Because no worker observes

the deletion, we do not use the worker ID feature in predicting deletion endorsement,

and we write p(Y = 1) instead of p(Yk = 1).

The sum of log probabilities in A(c) reflects the fact that any operation on a

well-formed sentence carries inherent risk: modifying a sentence’s dependency tree

may result in a compression which is not acceptable. The more operations executed

the greater the chance of generating a garbled compression. We use this intuition

to define a simpler alternative, AM(c) , −M , where M is the number of prune

operations used to create the compression. We also examine a function Amin(c) ,

82

min{log p(Y = 1|W ,xi) | i ∈ 1..M}, which represents our observation that a single

operation with a low chance of endorsement will often create a garbled compression.

We compare these functions to ALM(c), which is equal to the probability of the

compression c under a language model, normalized by sentence length. (We use the

Norm LP formula defined in §4.5. Language model predictions have been shown

to correlate with the well-formedness of a sentence [195, 179].) Finally, we test a

function ACoLA(c), which is equal to the predicted probability of well-formedness of

the compression from a pretrained acceptability predictor (§4.5).

4.6.2 Evaluating multi-operation acceptability scores

To evaluate each Acceptability function, we collect a small dataset of multi-

prune compressions.11 We draw 1000 initial candidate sentences from a standard

compression corpus [107], and then remove sentences which are shorter than 100

characters to create a sample of 958 sentences. We then compress each of the sentences

in the sample by executing prune operations in succession until the character length

of the remaining sentence is less than B, a randomly sampled integer between 50 and

100. This creates an evaluation dataset with a (roughly) uniform distribution, by

character length.

To generate each compression, we use a sampling method which allows us to

explore a wide range of well-formed and garbled shortenings, without generating too

many obviously terrible compressions.12 Concretely, we sample each prune operation

in each chain in proportion to p(Y = 1), a model’s prediction (§4.5) that the edit will

be judged acceptable. This means that we delete vertex v and its descendants with

probability 1
Z
p(y = 1|W, s, cv), where cv is the compression formed by pruning the

11Rather than single-prune compressions (§4.4).

12Very many exponential possible compressions of a single sentence will be garbled or non-sensical.
Pruning even a single subtree at random from an acceptable sentence (§4.5) destroys acceptability
more than 60% of the time.

83

subtree rooted at v and Z =
∑

v∈V p(y = 1|W, s, cv) is the sum of the endorsement

probability of all possible compressions.13

We show each sentence in the evaluation dataset to 3 annotators, using our ac-

ceptability prompt (Figure 4.2). This creates final evaluation set consisting of 2,388

judgements of 940 multi-prune compressions, after we implement the judgement fil-

tering process described in Appendix 4.8. We compute κ=0.099 for the evaluation

dataset.

For all defined Acceptability functions, we measure AUC against binary worker

deletion endorsements (yes or no judgements) in the evaluation dataset to determine

the quality of the ranking produced by each Acceptability function (§4.5.2). The

function A(c), which integrates information from a language model, as well as infor-

mation about the grammatical details of the process which creates c from s, achieves

the highest AUC on the evaluation set, best correlating with human judgements of

well-formedness.

Function Description ROC AUC

ACoLA(c) CoLA pretrained .510
ALM(c) Language model .557
AM(c) Number of operations × -1 .580
Amin(c) Least acceptable operation .581
A(c) All operations acceptable .591

Table 4.4: ROC AUC for several Acceptability functions for the multi-operation
compression task. The A(c) model achieves a gain of .034 in AUC over the ALM(c)
model (p = 0.005).

13In the behavioral sciences, this method of choosing actions is sometimes called probability match-
ing [337].

84

4.6.3 Exploring many compressions of one sentence

This work argues that there is no single best way to compress a sentence. We

demonstrate this idea by examining some of the exponential possible compressions of

the sentence shown below. (This same sentence is also shown in Table 4.1.)

s = Pakistan launched a search for its missing ambassador to Afghanistan on
Tuesday, a day after he disappeared in a Taliban area.
cg = Pakistan launched a search for its missing ambassador
c1 = Pakistan launched a search for its missing ambassador to Afghanistan on
Tuesday
c2 = Pakistan launched search Tuesday

Table 4.5: A sentence s and a “gold” compression (cg) from a standard corpus [107],
along with two alternate compressions (c1 and c2).

We generate an initial list of 1000 possible compressions of this 126-character sen-

tence via the procedure defined in §4.6.2, and we score the Acceptability of each

compression by A(c). In this instance, we define Brevity(c) to be the maximum

character length of a compression and Query(c) to be a binary function returning 1

only if the compression includes the lexical query term, Q=“Afghanistan”. Compres-

sions which do not include Q=“Afghanistan” would not be suitable for a user seeking

to examine mentions of “Afghanistan in context.14

Following deduplication steps described in the Appendix 4.8, we generate a final

list of 554 different possible compressions of the sentence. We plot each of the 554

compressions in Figure 4.3, which shows many possible shortenings with high A(c)

scores. The “gold standard” compression is just one arbitrary shortening of a sentence.

14Practical compression systems would also need to check for changes in meaning resulting from
deletion (§4.2), but we leave this step for future work.

85

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

−15

−10

−5

0

50 60 70 80 90 100
Brevity

A
cc

ep
ta

bi
lty ●

alt. 1
alt. 2
gold

Importance
●

●
False
True

Figure 4.3: 554 possible compressions of a single sentence (Table 4.5), displayed by
A(c) score, Brevity constraint and lexical Query criterion. The “gold standard”
compression, cg, is shown with a large red square, along with alternate c1 (large
triangle), and alternate c2 (large circle).

4.7 Conclusion and future work

Our effort suggests a number of obvious steps for future work. To begin, our

study is strictly concerned with grammatical and not semantic acceptability. In the

future, we hope to apply active research in semantics (§4.2) to identify meaning-

changing compressions. We also plan to add support for additional operations (e.g.

paraphrasing), develop improved models of multi-prune compression, and adapt our

Acceptability scores to offer differentiable add-ons to neural network loss func-

tions.

4.8 Appendix

4.8.1 Crowdsourcing details

We paid workers 5 cents per judgement and only opened our task to US-based

workers with a level-2 designation on Figure Eight.

86

Following standard practice on the crowdsourcing platform, we used test questions

to screen out careless workers [312]. All workers began our job with a quiz mode of 10

screener questions, and then saw one screener question in every subsequent page of 10

judgements. Workers who failed more than 80% of test questions were screened out

from the task. Screener questions were indistinguishable from our regular collection

prompt.

We wrote test screener questions based on established understanding of English

syntax, to avoid biasing results with our own subjective judgements of acceptability.

For example, linguists have extensively examined which English verbs require objects

and which verbs do not require objects via corpus-based, elicitation-based and eye-

tracking methods [117, 318]. We used this work to write screener questions which

check that workers answer no for operations that prune direct objects of obligatory

transitive verbs. Similarly, we wrote screener questions which check that workers

answer no to deletions which split a verb and a known obligatory particle in a multi-

word expression [18], or remove determiners before singular count nouns [166, p. 354].

For the multi-prune dataset (§4.6.2), we added test questions which confirmed that

workers approved of well-formed, gold standard compressions from a standard corpus

[107].

We also include screener questions which check if a worker is paying attention,

along with several poll questions which ask workers if they grew up speaking English.15

We ignore judgements from known non-native speakers and known inattentive workers

in downstream analysis.16 We defined rules for filtering the dataset before examining

the test set to ensure that filtering decisions did not influence test-set results. We

15Workers are instructed there is no right answer to questions about language background, so
there is no incentive to answer dishonestly.

16We also exclude 1663 suspected fraudulent judgements from 17 IP address associated with
multiple worker IDs.

87

release screener questions and task instructions along with crowdsourced data for this

work.

4.8.2 Per-dependency deletion endorsements

Breaking out worker responses by dependency type provides additional validation

for our data collection approach. We observe that workers are unlikely to endorse

deletion of dependency types which create compressions that English speakers would

deem “ungrammatical,” and likely to endorse deletions which speakers would deem

“grammatical.”

For example, in UD, the mwe−−→ relation is most commonly used to link two or

more function words that obligatorily occur together (e.g. because of, due to, as well

as). Since deleting a mwe−−→ amounts to suppressing a critical closed-class item, it is

not surprising that, overall, workers only assented to deleting mwe−−→ in 9.5% of cases.

Similarly, low deletion endorsement for the cop−→ relation (15.6%) is consistent with

the grammatical rules of mainstream varieties of American English, which generally

require an overt copula in copular constructions.17

On the other hand, we found that optional [193] pre-conjunction operators like

both or either were almost always considered removable (80.0% deletion endorsement).

Workers also endorsed the deletion of temporal adverbs such as tomorrow or the day

after next 78.9% of the time, which is sensible as temporal adverbs are typically

considered adjuncts.

Since these response patterns generally align with well-established grammatical

generalizations [166], they serve to validate our data collection approach.

17Not all dialects require overt copulas [129].

88

4.8.3 Experimental details

We report additional details regarding several of the experiments in the paper,

presented in the order in which experiments appear.

Fleiss κ. Fleiss’ original metric [113] assumes that each judged item will be judged

by exactly the same number of raters. However, our data filtering procedures create

a dataset with a variable number of raters per sentence-compression pair. (This is

common in crowdsourcing.) We thus calculate the observed agreement rate for an

individual item (Pi, in Fleiss’ notation) by computing the pairwise agreement rate

from among all raters for that item. We ignore cases where only one rater judged a

given (s, c) pair, which occurs for 73.2% of pairs.

Tuning and implementation. We implement our model , p(Y = 1|W ,x)

with scikit-learn [272] using L2 regularization. We tune the inverse regularization

constant to c = 0.1 to optimize ROC AUC in 5-fold cross validation over the training

set, after testing c ∈ {10j | j ∈ {−3,−2,−1, 0, 1, 2}}. We do not include a bias term.

All other settings are set to default values.

NormLP. Following Lau et al. [195], in this work, we use the Norm LP function

to normalize output from a language model to predict grammaticality. Our Norm

LP function uses predictions from a 3-gram language model trained on English Gi-

gaword [266] and implemented with KenLM [148]. Lau et al. [195] report identical

performance for the Norm LP function using 3-gram and 4-gram models.

Lau et al. [195] found that another function, SLOR, performed as well as Norm

LP in predicting human judgements. We found that Norm LP achieved higher AUC

than SLOR in 5-fold cross-validation experiments with the training set.18

Collocations. Our model includes a binary feature, indicating if an edit breaks a

collocation. We identify collocations by computing the offsets (signed token distances)

18Kann et al. [179] also examine SLOR for automatic fluency evaluation.

89

between words [215, ch. 5.2] in English Gigaword [266]. If the variance in token

distance between two words is less than 2 and the mean token distance between the

words is less than 1.5 we deem the words a collocation. We identify 647 total edits

(across train and test sets) which break a collocation; only 11 of such edits are for
mwe−−→ relations. Examples include: “forget about it” ’, “kind of” and “as well”.

CoLA. All reported results for the CoLA model use the Real/Fake + LM (ELMo)

baseline from Warstadt et al. [341].19 Across our entire dataset, the mean predicted

acceptability of source sentences from the CoLA model is 0.867 (σ=0.264) and the

predicted acceptability of compressions is 0.740 (σ = 0.363). We hypothesize that

compression scores have a greater variance and a lower mean because only some

compressions are well-formed.

Deduplication of possible compressions. In this work, we describe a method

for generating multiple compressions from a single sentence. In our generation proce-

dure, it is possible to randomly select the exact same sequence of operations multiple

times. During these experiments, we remove any such duplicates from the initial list.

Additionally, in our compression framework, the sequence of operations which

produces a given shortening is not unique.20 In cases where different sequences of

operations return the same compression, we select the compression with the highest

A(c) score, which represents the best available path to the shortening.

19https://github.com/nyu-mll/CoLA-baselines

20For instance, it is possible to prune a leaf vertex with one operation, and then prune its parent
vertex with a second operation; or just remove both vertexes at once via a single prune of the parent.
(Each sequence returns the same compression.)

90

https://github.com/nyu-mll/CoLA-baselines

CHAPTER 5

TEXT SIMPLIFICATION (VERTEX ADDITION)

This chapter was originally published as Query-focused Sentence Compression in

Linear Time [140].

Synopsis

During query-focused lexical corpus analysis (§1.2.1), users review mentions of lex-

ical items in context. However, reading over all mentions of a lexical item in a corpus

can be burdensome. Sentences which mention a lexical item may be long and complex,

and there may be hundreds or thousands of mentions within a corpus. Therefore, this

chapter introduces a new transition-based sentence simplification technique to help

users review simplified mentions of a query Q in context.

Our vertex addition method takes an English sentence as input, and grows a

subgraph of the dependency parse of the sentence to return a shortened output sen-

tence which both contains lexical query terms and adheres to a sentence-level context

budget. This theoretically efficient approach achieves a corresponding 11x empirical

speedup over a baseline integer linear programming method, while better reconstruct-

ing known good shortenings in a benchmark corpus. Such speedups help in user-facing

applications such as Rookie or ClioQuery (Chapters 6 and 7), because users are

measurably hindered by interface lags. Additionally, vertex addition does not

require access to specialized ILP software or an expensive GPU, which is important

for practitioners in fields like journalism and history.

91

5.1 Introduction

In natural language processing, the extractive sentence compression task seeks to

create short, readable, single-sentence summaries which retain the most “important”

information from source sentences. Extractive sentence compression methods can

assist with query-focused lexical corpus analysis (e.g. §7), by simplifying text to help

users quickly read over query mentions; provided that shortened sentences include a

user’s lexical query Q and fit in the screen space available in a user interface. For

instance, Rookie (§6), ClioQuery (§7) and the systems shown in Figure 1.5d and

Figure 5.1 each show sentences mentioning Q in particular UIs.

There are no known methods to efficiently shorten sentences so that they always

include Q and adhere to a character-level length budget. While techniques based on

integer linear programming (ILP) can trivially accommodate such length and lexical

restrictions [67, 107, 339], these approaches rely on slow third-party solvers to optimize

an NP-hard integer linear programming objective, causing unwelcome user wait time

[205]. An alternative LSTM tagging approach [109] does not allow practitioners to

specify length or lexical constraints, and requires an expensive graphics processing

unit (GPU) to achieve low runtime latency (access to GPUs is a barrier in fields

like social science and journalism). These deficits prevent application of existing

compression techniques in user interfaces for lexical corpus analysis, where length,

lexical and latency requirements are paramount.

Therefore, in this chapter, we examine the English-language compression problem

under such length and lexical requirements. In our constrained compression setting, a

source sentence S is shortened to a compression C which (1) must include all tokens in

a set of lexical query terms Q and (2) must be no longer than a maximum budgeted

character length, b ∈ Z+. Formally, constrained compression maps (S,Q, b) → C,

such that C respects Q and b. We describe this task as query-focused compression

because Q places a hard requirement on words from S which must be included in

92

C. We then present a new stateful method for query-focused compression, which is

theoretically and empirically faster than ILP-based techniques, and more accurately

reconstructs gold standard shortenings in a benchmark corpus.

Gazprom the Russian state gas giant announced a 40 percent increase
in the price of natural gas sold to Ukraine which is heavily dependent
on Russia for its gas supply.

Gazprom announced increase in the price of gas sold to Ukraine
Ukraine’s dependence on Gazprom left the country vulnerable
Kremlin-backed Gazprom transports gas to Europe through Ukraine

Gazprom Ukraine

S

Q

C

b = 75 char. max.

Figure 5.1: An interface for lexical corpus analysis (boxed, top) returns a snippet
consisting of three compressions which must contain a users’ query Q (bold) and
must not exceed b = 75 characters in length. The third compression C was derived
from source sentence S (italics, bottom).

5.2 Related work

Extractive compression shortens a sentence by removing tokens, typically for text

summarization [189, 67, 109, 339].1 To our knowledge, this work is the first to consider

extractive compression under hard length and lexical constraints.

We compare our vertex addition approach to ILP-based compression methods

[67, 107, 339], which shorten sentences using an integer linear programming objective.

ilp methods can easily accommodate lexical and budget restrictions via additional

optimization constraints, but require worst-case exponential computation.2

Finally, compression methods based on LSTM taggers [109] cannot currently en-

force lexical or length requirements. Future work might address this limitation by

applying and modifying constrained generation techniques [182, 278, 122].

1Some methods compress via generation instead of deletion [291, 214]. Our extractive method
is intended for practical, interpretable and trustworthy search systems [64]. Users might not trust
abstractive summaries [352], particularly in cases of factual error [191].

2ILPs are exponential in |V | when selecting tokens [67] and exponential in |E| when selecting
edges [109].

93

Approach Complexity Constrained

ILP exponential yes
LSTM tagger linear no
Vertex Addition linear yes

Table 5.1: Our vertex addition technique (§5.3) constructs constrained compres-
sions in linear time. Existing methods (§5.2) have higher computational complexity
(ILP) or do not respect hard constraints (LSTM tagger).

5.3 Compression via vertex addition

We present a new transition-based method for shortening sentences under lexi-

cal and length constraints, inspired by similar approaches in transition-based parsing

[258]. We describe our technique as vertex addition because it constructs a short-

ening by growing a (possibly disconnected) subgraph in the dependency parse of a

sentence, one vertex at a time. This approach can construct constrained compres-

sions with a linear algorithm, leading to 11x lower latency than ILP techniques (§5.4).

To our knowledge, our method is also the first to construct compressions by adding

vertexes rather than pruning subtrees in a parse [189, 9, 106], as in §4. Our ver-

tex addition assumes a Boolean relevance model; S must contain the user’s lexical

query Q.

5.3.1 Formal description

vertex addition builds a compression by maintaining a state (Ci, Pi) where

Ci ⊆ S is a set of added candidate vertexes, Pi ⊆ S is a priority queue of vertexes, and

i indexes a timestep during compression. Figure 5.2 shows a step-by-step example.

During initialization, we set C0 ← Q and P0 ← S \ Q. Then, at each timestep,

we pop some candidate vi = h(Pi) from the head of Pi and evaluate vi for inclusion

in Ci. (Neighbors of Ci in Pi get higher priority than non-neighbors; we break ties

in left-to-right order, by sentence position). If we accept vi, then Ci+1 ← Ci ∪ vi; if

not, Ci+1 ← Ci. We discuss acceptance decisions in detail in §5.4.2.2. We continue

94

adding vertexes to C until either Pi is empty or Ci is b characters long. We linearize

C by left-to-right vertex position in S, common for compression in English [107].

Algorithm 5.3.1 shows the steps of vertex addition. Figure 5.2 shows a single

example.

A B

C
D

E FA B

C
D

E F A B

C
D

E F A B

C
D

E FA B

C
D

E F

Legend viCi Pi ¬Ci

Figure 5.2: A dependency parse of a sentence S, shown across five timesteps of ver-
tex addition (from left to right). Each node in the parse is a vertex in S. Our
stateful method produces the final compression {A,C,B,E} (rightmost). Each candi-
date vi at each timestep is shown with a surrounding square box; rejected candidates
¬Ci are unshaded.

Algorithm 1: The vertex addition algorithm. The function ` linearizes
an unordered set of vertexes to a shortened sentence. The notation |P |
indicates the number of tokens in the priority queue.
input: s = (V,E), Q ⊆ V , b ∈ R+

C ← Q;P ← V \Q;
while `(C) < b and |P | > 0 do

v ← pop(P);
if p(y = 1) > .5 and `(C ∪ {v}) ≤ b then

C ← C ∪ {v}
end

end
return `(C)

vertex addition is linear in the token length of S because we pop and evaluate

some vertex from Pi at each timestep (and set P0 ← S \ Q). Additionally, because

(1) we never accept vi if the length of Ci ∪ vi is more than b, and (2) we set C0 ← Q,

our method always respects Q and b.

95

5.4 Evaluation

We observe the latency, readability and token-level F1 score of vertex addi-

tion, using a standard dataset for sentence compression [107]. We compare our

method to an ilp baseline (§5.2) because ILP methods are the only known technique

for constrained compression. All methods have similar compression ratios (shown in

Appendix §5.7), a well-known evaluation requirement [245]. We evaluate the signif-

icance of differences between our CPU-based vertex addition and the ilp with

bootstrap sampling [34]. All differences are significant (p < .01).

5.4.1 Constrained compression experiment

In order to evaluate different approaches to constrained compression, we require

a dataset of sentences, constraints and known-good shortenings, which respect the

constraints. This means we need tuples (S,Q, b, Cg), where Cg is a known-good

compression of S which respects Q and b (§5.1).

To support large-scale automatic evaluation, we reinterpret a standard compres-

sion corpus [107] as a collection of input sentences and constrained compressions. The

original dataset contains pairs of sentences S and compressions Cg, generated using

news headlines. For our experiment, we set b equal to the character length of the

gold compression Cg. We then sample a small number of nouns3 from Cg to form a

query set of lexical items Q, approximating both the observed number of tokens and

observed parts of speech in real-world search [170, 26]. Sampled Q include reasonable

lexical queries like “police, Syracuse”, “NHS” and “Hughes, manager, QPR”.

By sampling queries and defining budgets in this manner, we create 198,570 train-

ing tuples and 9949 test tuples, each of the form (S,Q, b, Cg). Filippova and Altun

[107] define the train/test split. We re-tokenize, parse and tag with CoreNLP v3.8.0

[217]. We reserve 25,000 training tuples as a validation set.

31 to 3 nouns; cardinality chosen uniformly at random.

96

5.4.2 Models

5.4.2.1 ILP

We compare our system to a baseline ilp method, presented in Filippova and

Altun [107]. This approach represents each edge in a syntax tree with a vector

of real-valued features, then learns feature weights using a structured perceptron

trained on a corpus of (S,Cg) pairs.4 Learned weights are used to compute a global

compression objective, subject to structural constraints which ensure C is a valid

tree. This baseline can easily perform constrained compression: at test time, we add

optimization constraints specifying that C must include Q, and not exceed length b.

To our knowledge, a public implementation of this method does not exist. We

reimplement from scratch using Gurobi Optimization [133], achieving a test-time,

token-level F1 score of 0.76 on the unconstrained compression task, lower than the

result (F1 = 84.3) reported by the original authors. There are some important differ-

ences between our reimplementation and the original approach which might explain

the discrepancy (described in detail in the Appendix §5.7). Since vertex addition

requires Q and b, we can only compare it to the ILP on the constrained (rather than

traditional, unconstrained) compression task.

5.4.2.2 Vertex Addition

Vertex addition accepts or rejects some candidate vertex vi at each timestep i.

We learn such acceptance decisions yi ∈ {0, 1} using a corpus of tuples (S,Q, b, Cg),

described in §5.4.1. Given such a tuple, we can always execute an oracle path short-

ening S to Cg by first initializing vertex addition and then, at each timestep: (1)

choosing vi = h(Pi) and (2) adding vi to Ci iff vi ∈ Cg. We set yi = 1 if vi ∈ Cg; we set

yi = 0 if vi /∈ Cg. We then use decisions from oracle paths to train a model of inclusion

4Another ILP [339] sets weights using a LSTM, achieving similar in-domain performance. This
method requires a multi-stage computational process (i.e. run a LSTM then an ILP) that is poorly-
suited to query-focused settings, where low latency is crucial.

97

decisions, p(yi = 1|vi, Ci, Pi, S). At test time, we accept vi if p(yi > .5). We imple-

ment p(yi|vi, Ci, Pi, S) in two ways, vertex additionNN and vertex additionLR,

described below.

Model One. Our vertex additionNN model broadly follows neural approaches

to transition-based parsing (e.g. Chen and Manning [57]): we predict yi using a LSTM

classifier with a standard max-pooling architecture [69], implemented with a common

neural network framework [120]. Our classifier maintains four vocabulary embeddings

matrixes, corresponding to the four disjoint subsets Ci ∪ ¬Ci ∪ Pi ∪ {vi} = V . Each

LSTM input vector xt comes from the appropriate embedding for vt ∈ V , depending

on the state of the compression system at timestep i. The appendix details network

tuning and optimization.

Model Two. Our vertex additionLR model uses binary logistic regression,5

with 3 classes of features.

Edge features describe the properties of the edge (u, vi) between vi ∈ Pi and

u ∈ Ci. We use the edge-based feature function from Filippova and Altun [107],

described in detail in the Appendix §5.7. This allows us to compare the performance of

a vertex addition method based on local decisions with an ILP method that optimizes

a global objective (§5.4.4), using the same feature set.

Stateful features represent the relationship between vi and the compression Ci

at timestep i. Stateful features include information such as the position of vi in the

sentence, relative to the right-most and left-most vertex in Ci, as well as history-based

information such as the fraction of the character budget used so far. Such features

allow the model to reason about which sort of vi should be added, given Q, S and Ci.

5We implement with Python 3 using scikit-learn [272]. We tune the inverse regularization constant
to c = 10 via grid search over powers of ten, to optimize validation set F1.

98

Interaction features are formed by crossing all stateful features with the type of

the dependency edge governing vi, as well as with indicators identifying if u governs

vi, if vi governs u or if there is no edge (u, vi) in the parse.

5.4.3 Metrics: F1, Latency and SLOR

We measure the token-level F1 score of each compression method against gold

compressions in the test set. F1 is the standard automatic evaluation metric for

extractive compression [109, 188, 339].

In addition to measuring F1, researchers often evaluate compression systems with

human importance and readability judgements [189, 109]. In our setting Q determines

the “important” information from S, so importance evaluations are inappropriate. To

check readability, we use the automated readability metric SLOR [194], which is

known to correlate with human judgements [179].

We check the theoretical gains from vertex addition (Table 5.1) by measuring

empirical latency. For each compression method, we sample and compress N =

300, 000 sentences, and record the runtime (in milliseconds per sentence). Because

we observe that runtimes are distributed log-normally (Figure 5.3), we summarize

each sample using the geometric mean. ilp and vertex additionLR share edge

feature extraction code to support to fair comparison. We test vertex additionNN

using a CPU (Table 5.2), to test performance for users without access to specialized

hardware. The Appendix §5.7 further details latency and SLOR experiments.

5.4.4 Comparisons: Ablated & Random

For comparison, we also implement an ablated vertex addition method, which

learns inclusion decisions using only edge features from Filippova and Altun [107].

ablated has a lower F1 score than ilp, which uses the same edge-level information

to optimize a global objective: adding stateful and interaction features (i.e. vertex

additionLR) improves F1 score. Nonetheless, strong performance from ablated

99

hints that edge-level information alone (e.g. dependency type) can mostly guide ac-

ceptance decisions.

We also evaluate a random baseline, which accepts each vi randomly in propor-

tion to p(yi = 1) across training data. random is a strong F1 baseline because (1)

C0 = Q ∈ Cg and (2) F1 correlates with compression rate [245], and b is set to the

length of Cg.

Approach F1 SLOR ∗Latency

random (lower bound) 0.653 0.377 0.5
ablated (edge only) 0.827 0.669 3.7
vertex additionNN 0.873 0.728 2929.1 (CPU)

ilp 0.852 0.756 44.0
vertex additionLR 0.881 0.745 4.1

Table 5.2: Test results for constrained compression. ∗Latency is the geometric mean
of observed runtimes (in milliseconds per sentence). vertex additionLR achieves
the highest F1, and also runs 10.73 times faster than the ilp. Differences between all
scores for vertex additionLR and ilp are significant (p < .01).

0.0
0.5
1.0
1.5

0.001 0.01 0.1 1 10
seconds (log scale)

de
ns

ity

method

ilp
vertex addition (lr)

Figure 5.3: Density plot of log transformed latencies for Vertex AdditionLR

(left) and ilp (right). Theoretical gains (Table 5.1) create real wall clock speedups.
The ilp shows greater runtime variance, possibly reflecting varying approaches from
Gurobi Optimization [133].

5.5 Future work: Vertex Addition in practice

This work presents a new method for fast, query-focused, sentence compression,

motivated by lexical corpus analysis. While our approach shows promise in simulated

experiments, we expect that further work will be required before the method can be

employed for practical, user-facing search.

100

To begin, both our technique and our evaluation ignore the conventions of search

user interfaces, which typically display missing words using ellipses. This convention

is important, because it allows snippet systems to transparently show users which

words have been removed from a sentence. However, we observe that some well-

formed compressions are difficult to read when displayed in this format. For instance

the sentence “Aristide quickly fled Haiti in September 1991” can be shortened to the

well-formed compression “Aristide fled in 1991." But this compression does not read

fluidly when using ellipses (“Aristide...fled...in...1991"). Human experiments aimed

at enumerating the desirable and undesirable properties of compressions displayed

in ellipse format (e.g. compressions should minimize number of ellipses?) could help

guide user-focused snippet algorithms in future work.

Our method also assumes access to a reliable, dependency parse, and ignores any

latency penalties incurred from parsing. In practical settings, both assumptions are

unreasonable. Like other NLP tools, dependency parsers often perform poorly on

out of domain text [22], and users looking to quickly investigate a new corpus might

not wish to wait for a parser. Faster approaches based on low-latency part-of-speech

tagging, or more cautious approaches based on syntactic uncertainty [181], each offer

exciting possibilities for additional research.

Our approach also assumes that a user already knows a reasonable b and reason-

able Q for a given sentence S.6 However, in some cases, there is no well-formed short-

ening of which respects the requirements. For instance, if Q=“Kennedy” and b=15

there is no reasonable shortening for the toy sentence “Kennedy kept running”, be-

cause the compressions “Kennedy kept" and “Kennedy running" are not well-formed.

We look forward to investigating which (Q,S, b) triples will never return well-formed

compressions in later work.

6Recall that we simulate b and Q based on the well-formed shortening Cg, see §5.4.1.

101

Finally, some shortened sentences will modify the meaning of a sentence, but we

ignore this important complication. In the future, we hope to apply ongoing research

into textual entailment [42, 271, 227] to develop semantically-informed approaches to

the task.

5.6 Conclusion

We introduce a query-focused vertex addition method for shortening sentences

containing one or more query words Q. Our method has much lower theoretical

complexity (and empirical runtimes) than baseline techniques, while achieving similar

performance in reconstructing known good sentence shortenings. vertex addition

thus takes steps towards our goal of developing computationally-efficient methods for

lexical corpus analysis (§1.5).

5.7 Appendix

5.7.1 Neural network tuning and optimization

We learn network parameters for vertex additionNN by minimizing cross-

entropy loss against oracle decisions yi. We optimize with AdaGrad [93]. We learn

input embeddings after initializing randomly. The hyperparameters of our network

and training procedure are: the learning rate, the dimensionality of input embed-

dings, the weight decay parameter, the batch size, and the hidden state size of the

LSTM. We tune via random search [35], selecting parameters which achieve highest

accuracy in predicting oracle decisions for the validation set. We train for 15 epochs,

and we use parameters from the best-performing epoch (by validation accuracy) at

test time.

102

Parameter Value

Batch size 135
Embedding dim. 315
Hidden dim. 158
Learning rate 0.025
Weight decay 1.88 ×10−9

Table 5.3: Hyperparameters for vertex additionNN

5.7.2 Reimplementation of Filippova and Altun

In this work, we reimplement the method of Filippova and Altun [107], who in

turn implement a method partially described in Filippova and Strube [108]. There

are inevitable discrepancies between our implementation and the methods described

in these two prior papers.

1. Where the original authors train on only 100,000 sentences, we learn weights

with the full training set to compare fairly with vertex addition (each model

trains on the full training set).

2. We use Gurobi Optimization [133] (v8) to solve the integer linear program.

Filippova and Strube [108] report using LPsolve.7

3. We implement with the common Universal Dependencies (UD, v1) framework

[259]. Prior work [108] implements with older dependency formalisms [47, 84].

4. In Table 1 of their original paper, Filippova and Altun [107] provide an overview

of the syntactic, structural, semantic and lexical features in their model. We

implement every feature described in the table. We do not implement features

which are not described in the paper.

7http://sourceforge.net/projects/lpsolve

103

http:// sourceforge.net/projects/lpsolve

5. Filippova and Altun [107] augment edge labels in the dependency parse of S as

a preprocessing step. We reimplement this step using off-the-shelf augmented

modifiers and augmented conjuncts available with the enhanced dependencies

representation in CoreNLP [296].

6. Filippova and Altun [107] preprocess dependency parses by adding an edge

between the root node and all verbs in a sentence.8 We found that replicating

this transform literally (i.e. only adding edges from the original root to all

tokens tagged as verbs) made it impossible for the ILP to recreate some gold

compressions. (We suspect that this is due to differences in output from part-

of-speech taggers). We thus add an edge between the root node and all tokens

in a sentence during preprocessing, allowing the ILP to always return the gold

compression.

We assess convergence of the ILP by examining validation F1 score on the tradi-

tional sentence compression task. We terminate training after six epochs, when F1

score stabilizes changes by fewer than 10−3 points.

5.7.3 Implementation of SLOR

We use the SLOR function to measure the readability of the shortened sentences

produced by each compression system. SLOR normalizes the probability of a token

sequence assigned from a language model by adjusting for both the probability of the

individual unigrams in the sentence and for the sentence length.9

Following Lau et al. [194], we define the function as:

8This step ensures that subclauses can be removed from parse trees, and then merged together
to create a compression from different clauses of a sentence.

9Longer sentences are always less probable than shorter sentences; rarer words make a sequence
less probable.

104

SLOR =
logPm(ξ)− logPu(ξ)

|ξ| (5.1)

where ξ is a sequence of words, Pu(ξ) is the unigram probability of this sequence

of words and Pm(ξ) is the probability of the sequence, assigned by a language model.

|ξ| is the length (in tokens) of the sentence.

To define language model probabilities, we use a 3-gram model trained on the

training set of the Filippova and Altun [107] corpus. We implement with KenLM

[148]. Because compression often results in shortenings where the first token is not

capitalized (e.g. a compression which begins with the third token in S) we ignore case

when calculating language model probabilities.

5.7.4 Latency evaluation

To measure latency, for each technique, we sample 100,000 sentences with replace-

ment from the test set. We observe the mean time to compress each sentence using

Python’s built-in timeit module. In order to minimize effects from unanticipated con-

founds in measuring latency, we repeat this experiment three separate times (with a

one hour delay between experiments). Thus in total we collect 300,000 observations

for each compression technique. We observe that runtimes are log normal, and thus

report each latency as the geometric mean of 300,000 observations. We use an Intel

Xeon processor with a clock rate of 2.80GHz.

5.7.5 Compression ratios

When comparing sentence compression systems, it is important to ensure that all

approaches use the same rate of compression [245]. Following Filippova et al. [109],

we define the compression ratio as the character length of the compression divided

by the character length of the sentence. We present test set compression ratios for

all methods in Table 5.4. Because ratios are similar, our comparison is appropriate.

105

random 0.405

ilp 0.408
ablated 0.387
vertex additionLR 0.403
vertex additionNN 0.405

Cg Train 0.384
Cg Test 0.413

Table 5.4: Mean test time compression ratios for all techniques. We also show mean
ratios for gold compressions Cg across the train and test sets.

106

PART III: HOW TO DESIGN
LEXICAL SYSTEMS FOR
SPECIFIC USER GROUPS

CHAPTER 6

ROOKIE

This chapter is adapted from Rookie: A unique approach for exploring news

archives [138].

Synopsis

In this section, we describe the development, implementation and evaluation of

Rookie, a tool for lexical corpus analysis designed for journalists, readers and editors

learning about new topics from news archives. Rookie facilitates exploratory lexical

corpus analysis by drawing the user’s attention to unusually frequent noun phrases

from a corpus vocabulary (applying methods from Chapter 2), and also facilitates

query-focused lexical corpus analysis by helping users quickly investigate such noun

phrases in context. (Exploratory and query-focused lexical analysis are defined in

§1.2.1)

Our effort designing and testing Rookie offers a case study in building user-facing

lexical systems. It also shows one way in which current search interfaces are imperfect

tools for making sense of broad narratives across individual archived documents; we

observe that Rookie users complete an archive-based sensemaking task 37% faster

than other users assigned to complete the same task using a traditional search user

interface. This finding inspires our search for alternative text user interfaces, which

may also assist other users in other domains.

108

B C

A

Figure 6.1: The Rookie interface running on a corpus of New York Times articles
about Haiti. The user has queried for “United States.” The interface features three
linked visualization and summarization views: (A) an interactive timeline, (B) a Sub-
jects Summary showing automatically-generated related subjects, and (C) a Snippet
Summary showing sentence summaries. The temporal spikes indicate major events
such as a 1994 U.S. intervention in Haiti and a 2004 military coup. Related subjects
include specific actors in some of these events (Jean-Bertrand Aristide, President
Clinton) as well as long-running topics (human rights). Users can click and drag
along the timeline to investigate specific time periods.

6.1 Introduction

News archives offer a rich historical record. But if a reader or journalist wants

to learn about a new topic with a traditional search engine, they must enter a query

and begin reading or skimming old articles one-by-one, slowly piecing together the

intricate web of people, organizations, events, places and concepts that make up “the

news.”

To help such users identify broader stories across documents, we propose Rookie,

which began as an attempt to build a useful tool for journalists. With Rookie, a

109

user’s query generates an interactive timeline, a list of important subjects drawn

from the corpus lexicon, and a summary of a user-selected lexical item, all displayed

together as a collection of interactive linked views (Figure 6.1). Quantitative user

testing shows that such features help Rookie users correctly complete a historical

sensemaking task 37% faster than users assigned to complete the same task with a

traditional search user interface. Additionally, qualitative user testing suggests how

Rookie might help users fluidly investigate complex news stories as they evolve across

time.

More broadly, throughout this thesis, we argue and strive for a number of design

goals in user-facing lexical systems (Section 1.5). Many of these goals emerged from

our work on Rookie; because we developed Rookie for real-world journalists, we

were forced to cope with limitations in the speed, accuracy and interpretability of

current natural language processing techniques. We describe these limitations in

NLP methods, and our efforts to design around them, in Section 6.4.

6.2 The Rookie system

The Rookie interface always reflects the user selection state, a triple (Q, Q′,

T) where:

• Q is a free text query string (e.g. “Bashar al-Assad”)

• Q′ is a related subject string (e.g. “30 years”) or is null

• T is a timespan (e.g. Mar. 2000–Sep. 2000); by default, this is set to the span

of publication dates in the corpus.

Users first interact with Rookie by entering a query, Q into a search query bar

using a web browser. For example, in the Figure below, a user seeking to understand

the roots of the Syrian civil war has entered Q = “Bashar al-Assad”. In response,

Rookie renders an interactive time series visualization showing the frequency of

110

query-matching documents from the corpus (§6.2.4), a list of subjects in the match-

ing documents called Subjects Summary (§6.2.2) and a textual summary of those

documents called Snippet Summary (§6.2.3).

A

B C

Figure 6.2: A user searches for Q =“Bashar al-Assad”. Rookie shows: (A) a time
series visualization, (B) Subjects Summary (a lexical view), and (C) Snippet Summary
(a text view). In this figure, Q′ is null.

After enteringQ, the user might notice that “Bashar al-Assad” is mainly mentioned

from early 2000 onwards. To investigate, they might adjust the time series slider to

select T = Mar. 2000–Sep. 2000 (Figure 6.3).

Figure 6.3: The user zooms to T = Mar. 2000–Sep. 2000.

When the user adjusts T to Mar. 2000–Sep. 2000, Snippet Summary and Subjects

Summary change to reflect the new timespan (Figure 6.4). Subjects Summary now

shows subjects like “President Assad”, “TRANSITION IN SYRIA”,1 and “Hafez al-

1In this example, the corpus is a collection of New York Times world news articles from 1987 to
2007 that contain the string “Syria”. All of the country-specific examples in this study are subsets of
the same New York Times (NYT) LDC corpus [292]. Capital letters are from NYT section headers.

111

Assad” which are important to Q during T . (Bashar al-Assad succeeded Hafez al-

Assad in the year 2000.)

Figure 6.4: Subjects Summary shows important subjects for Q =“Bashar al-Assad”
during T = Mar. 2000–Sep. 2000.

At this point, the user might explore further by investigating the related subject,

Q′ =“Hafez al-Assad”. When they click to select, Snippet Summary attempts to

summarize the relationship between Q =“Bashar al-Assad” and Q′ =“Hafez al-Assad”

during T = Mar. 2000–Sep. 2000 (see Figure 6.5) If the user wants to understand any

sentence from Snippet Summary in context, they can click to open the underlying

document in a modal dialog.

Figure 6.5: Rookie now adds mentions of Q′ =“Hafez al-Assad” to the time series
graph. Snippet Summary updates to reflect the updated state, (Q=“Bashar al-Assad”,
Q′ =“Hafez al-Assad”, T = Mar. 2000–Sep. 2000).

Q′ and Q are assigned red and blue colors throughout the interface, allowing users

to quickly scan for information. Bolding Q and Q′ gives additional clarity, and helps

ensure that Rookie still works for colorblind users.

This example demonstrates how Rookie’s visualization and summarization tech-

niques work together to offer linked views of the underlying corpus. Linked views

112

(a.k.a. multiple coordinated views) interfaces are common tools for structured in-

formation [49, 332, 262]: each view displays the same selected data in a different

dimension. For instance, a linked view system might show a geographic map of a

city in one view, and update a histogram of housing values in a second view when

a user clicks a zip code. In Rookie’s case, linked views display different levels of

resolution. The time series visualization offers a temporal view of query-responsive

documents, Subjects Summary displays a medium-level lexical view of important

subjects within the documents, and Snippet Summary displays a low-level text view

of parts of the underlying documents. The documents themselves (shown when the

user clicks extracted sentences) offer the most detailed level of zoom. Thus Rookie

supports the commonly advised visualization pathway: “overview first, zoom and

filter, and details on demand” [308].

Note that we use the term summarization to mean selecting a short textual

span, or a sequence of short textual spans, to represent a body of text. By this defi-

nition, both Subjects Summary and Snippet Summary are a form of summarization,

as each offers a textual representation of the corpus, at two different levels of resolu-

tion (phrases and sentences). In the NLP literature, “summarization” usually means

generating a sentence or paragraph length summary [82].

Rookie is a web application implemented in Python.2

6.2.1 Linked views in the Rookie system

Rookie’s user selection state (Q, Q′, T) picks out a set of documents D(Q,Q′,T),

which were published within T , match the query Q in Whoosh and contain Q′ (if Q′

is not null). The selection state also specifies a set of sentences S, used to construct

2We use the Flask (http://flask.pocoo.org/) framework with a Postgres (https://www.
postgresql.org/) database and a React front end (https://facebook.github.io/react). We
used the open-source search engine Whoosh (https://whoosh.readthedocs.io), which is broadly
similar to Lucene, to find documents matching Q.

113

http://flask.pocoo.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://facebook.github.io/react
https://whoosh.readthedocs.io

a summary (§6.2.3). These documents and sentences are then shown to the user in

the linked views, described individually in the following sections.

6.2.2 Lexical view: Subjects Summary

Rookie uses natural language processing methods to find and recommend a list

of subjects related to the query Q, during time T . These subjects are presented as a

concise list of terms, offering a lexical view of the D(Q,T) selection (Figure 6.1, bottom

left).

Rookie’s subject-finding algorithm works in two stages. At index time, Rookie

makes a single pass over the corpus to find and record all phrases which match certain

part-of-speech patterns. Specifically, Rookie uses the NPFST method (§2) to extract

phrases, which Rookie stores in a document–phrase index.3 Then, at query time,

Rookie uses this index to rank phrases which occur in documents responsive to Q,

returning top-ranked phrases as subjects for display in the UI.

Each time a user changes Q or T , Rookie identifies all phrases which occur in the

matching documents D(Q,T). Rookie then assigns each phrase a subject relevance

score. Relevance scores for each subject s are calculated with qf-idfs = qs∗ 1
dfs

where

the first term, qs (“query frequency”), is a count of how many times term s occurs

in D(Q,T) and the second term, 1
dfs

(“inverse document frequency”), is the inverse of

the number of documents which contain s across the corpus. Highly relevant phrases

occur frequently in query-matching documents, D(Q,T), but less frequently overall,

similar to pointwise mutual information [262]. Rookie places such high-ranking

phrases at the top of Subjects Summary .

Note that NP extraction often produces split or repeating phrases (§2) such as

“King Abdullah”, “Abdullah II” and “King Abdullah II”. Rookie uses several simple

3We only index subjects that occur at least five times in the corpus for use in subject list gener-
ation, though document retrieval for Q utilizes a standard full text index.

114

hand-written string-matching rules based on character-level Levenshtein distance and

token-level Jaccard similarity to avoid displaying duplicate terms.

6.2.3 Text view: Snippet Summary

Rookie’s time series visualizations offer an immediate question: what does Q

have to do with Q′ during T? For example, in Figure 6.1, the user might wish to

learn: what does “United States” have to do with the phrase “human rights” in articles

about Haiti from the early 90s? Rookie attempts to answer using extractive summa-

rization, picking sentences from D(Q,Q′,T) that can explain the relationship. Unlike in

traditional NLP, in Rookie the goal is not just to summarize some topic expressed by

Q (as in traditional query-focused summarization [82]), but to describe what Q′ has

to do with Q during T . (Rookie does not use relationship summarization3, but this

might be applied in future versions of the system.) Rookie also requires that any

summary can be produced quickly enough to support interactive search (see §6.4).

Thus, in building Rookie, we found it useful to require that the client be able to

generate a summary in less than half a second without server communication.4 This

principle allowed us to achieve fluid, exploratory interactions. The details of Snippet

Summary are discussed below.

6.2.3.1 Summary implementation: server side

After Rookie sends a user query, Q to the server, each query-responsive document

in D(Q,Q′,T) is permitted to send exactly one sentence to the client. This sentence is

selected via a two-tiered priority queue of sentences (from a given document). Each

sentence’s tier 1 score in the queue records if the sentence contains both Q and Q′

(top priority), Q or Q′ (medium priority) or neither Q nor Q′ (low priority). The

sentence’s tier 2 score is simply the sentence’s sequential number in the document.

4Half a second is a rough rule of thumb for acceptable latency in interactive systems, informed
by work from both Nielsen [255] and Liu and Heer [205].

115

(Sentences that come earlier in the document get higher priority). Rookie pops the

first sentence in each document’s queue to sent to the client, along with its publication

date, sentence number and tier 1 score. We use S to denote the set of sentences passed

to the client.

6.2.3.2 Summary implementation: client side

Rookie seeks to help explain what happened during a particular timespan, T .

So where traditional summarization seeks topical diversity [82], Rookie aims for

temporal diversity. It achieves this diversity by sampling sentences with probability

in proportion to the count of each monthly bin. For instance, if S contains 1000

sentences and 100 of them come from March of 1993, then there ought to be a one in

ten chance that a sentence from March 1993 is included in the summary.

In choosing sentences for the summary, Rookie will first pick randomly from

among sentences containing Q and Q′, then pick randomly in proportion to publi-

cation date from among sentences that contain Q or Q′ and, finally, pick randomly

from sentences containing from neither Q nor Q′.

Rookie draws sentences, one-by-one, until each sentence from S is selected and

placed into a list. Rookie allows users to page through this list (Figure 6.1), starting

from highest-ranked and moving towards lowest-ranked.

6.2.4 Temporal view: Interactive time series

Rookie’s time series visualization is a standard line graph showing both D(Q)

and D(Q,Q′) across the time variable. The y-axis represents counts of documents and

the x-axis represents time. For instance, in Figure 6.1, the blue line shows counts of

documents which matchQ= “United States”. A small copy of the time series graph for

each subject is shown in the subject list (Figure 6.1). These small graphs (sometimes

called “sparklines” [327]) give cues about a subject’s importance at difference times

in a corpus, even if the subject is not selected.

116

The time series graph allows the user to specify a desired time range T . Users can

select particular areas of the time series graph by clicking and dragging a timebox

[159] to create specialized summaries of certain time periods. If the user holds down

their mouse, clicks the grey rectangle, and slides the mouse across the timeline, the

user state changes to reflect the new T . Subjects Summary and Snippet Summary

show the evolving relationship through time.

updates summary

dragging mouse

Figure 6.6: Rookie’s summaries and time series offer linked views of the corpus.
The Snippet Summary panel updates in less than half a second, so users can drag
a cursor across the timeline to read about unfolding events. In this example, as
the user drags the rectangle to the right, they read about the 1991 coup that
removed Bertrand Aristide from power, and then his return several years later
with American support.

6.3 Evaluation

We evaluate Rookie using several established practices for evaluating exploratory

search [342, 343] including (1) surveys and questionnaires to measure user experience

and (2) quantitative measurements of human performance in completing a search

task.5

5All studies were approved by IRB.

117

Figure 6.7: A baseline interface “IR” interface for exploring news archives, similar
to the search functionality found on many news websites. Users enter a (Q,T) query
pair and the system returns a list of document–snippet pairs. We compare Rookie
to this baseline interface.

For each evaluation, we compared Rookie to a traditional search engine, the

baseline tool for answering any question from a collection of documents.

Traditional information retrieval (IR) systems return a ranked list of document–

snippet pairs in response to a user’s textual query. Users read or skim these snippets

and documents until they better understand some aspect of the corpus, possibly re-

querying for new documents during the search. We implemented the IR baseline

using Whoosh. Because Rookie allows limiting documents by date, we also added

a frequently-downloaded datepicker widget so that IR users can limit results to date

ranges. 6

6Like other traditional search engines, Whoosh creates small snippets which highlight portions of
each query-responsive document, boldfacing matching unigrams from the query. We tuned Whoosh
snippets by adjusting the top and surround parameters to help the IR system fairly compete with
Rookie, which displays whole sentences. Top controls how many “...”-delimited fragments Whoosh
returns for each document result, while surround is the maximum number of characters around each
highlighted text fragment. By default, Whoosh sets surround=20, but we found that this made for
choppy, confusing snippets, so we adjusted it to 50. We then did a grid search over possible values of
the top parameter—seeking the value that minimized the average absolute difference in the number
of characters shown for each snippet between Rookie versus Whoosh, arriving at top=2. All other
Whoosh parameters were set to default values. We used react-datepicker for the datepicker widget
https://www.npmjs.com/package/react-datepicker

118

https://www.npmjs.com/package/react-datepicker

We compared to a traditional search engine for a number of reasons: users are

familiar with Google (but not with alternatives), there are few robust implementations

of text analytics research systems available and previous work rarely compares to

traditional search, which we believe is a robust and powerful baseline.

6.3.1 In-person group evaluation

While building Rookie, we solicited ongoing feedback from working journalists.

Once we were confident in the final design, we conducted a larger and more formal user

test with 15 undergraduate journalism students. Undergraduate journalism students

are a good choice for a user group, as Rookie is built for reporters and readers

learning about new topics. (An additional qualitative evaluation with professional

journalists would have improved our study).

During the study, we loaded Rookie with a corpus of 5496 articles from the New

York Times from 1987 to 2007 which mentioned the country “Syria”. After a short

tutorial demo, we presented the users with a exploratory search prompt: “Imagine

you just got your first job as a fact checker and production assistant on a world news

desk. Your organization frequently covers the civil war in Syria. Use Rookie to

better understand the roots of the Syrian civil war so that you can begin contributing

at your new job”.

We gave users twenty minutes to try Rookie using this prompt; then presented

a questionnaire about their subjective experience. We did not to tell users about the

design intentions behind Rookie. We synthesize answers to each question below.

Q1: Did you enjoy using Rookie? What was good about it? Or bad

about it?

Users overwhelmingly reported that they “really enjoyed using this tool” and found

it useful “extremely useful in doing research”. One user said: “It made me feel like I

119

could find things that may be buried on a more generic search engine”. Another said:

“It makes a fluid way to search through a lot of information quickly”.

Q2 “How do you think something like [Rookie] could help journalists?”

Many users reported that Rookie could be helpful for journalists or other re-

searchers starting to learn about a new topic, which was our intention in designing

Rookie. One wrote: “As journalists, it’s important to have a large-view grasp of

a story before writing about it. The system could be helpful in providing both a

snapshot and an ability to then dive deeper into your story”.

Q3 “When would Rookie be better than using a traditional search en-

gine? When would it be worse?”

At the end of the user study, students tried researching the same topic with an IR

iterface loaded with the same corpus. We asked which tool would be better and when.

Many mentioned that Rookie would be superior if you were starting out researching

a new topic, but that a traditional search engine would be superior if you already

had a clear search need. As one student wrote in praising Rookie: “If you aren’t

... familiar about the history of the topic you probably want to build some context

first”.

6.3.2 Task completion evaluation

6.3.2.1 Historical sensemaking task

Gary Marchionini [219] distinguishes between simple fact-finding tasks and ex-

ploratory search, which involves activities like comprehension, interpretation and syn-

thesis. These activities are difficult to measure, but a simple and direct way to test

how well an exploratory system supports them is to record how long it takes a person

120

to accomplish a sensemaking task which requires these behaviors. This method is

ometimes called measuring “task time” [342].7

We thus measured how long it takes users to correctly answer the same complex,

non-factoid research question when using Rookie and the IR system. The question

asks a question about the complex historical relationship between the United States

and the Haitian political figure Jean-Bertrand Aristide. We asked users to pick the

correct answer from among these four: (1) The United States has been a longtime

opponent of the Haitian President Jean-Bertrand Aristide. (2) The United States has

been a longtime ally of the Haitian President Jean-Bertrand Aristide. (3) The United

States was initially an ally of Bertrand Aristide – but then stopped supporting him.

(4) The U.S. government was initially an opponent of Bertrand Aristide, but then

started supporting him.

The third answer is broadly correct, within the timespan of the corpus: the Clinton

administration used U.S. troops to restore Bertrand Aristide’s democratically-elected

government following a coup in the mid 1990s. Then, ten years later, the Bush

administration did not support Aristide during a later coup.

Users were asked to answer this question by searching for information New York

Times articles which mention “Haiti.” Within this corpus, articles exist describing

events in this historical relationship, but there does not appear to be a complete

narrative summary of this history in a single document. Users have to sort through,

comprehend, and synthesize many pieces of information across multiple articles until

they know the correct answer. The task took up to 21 minutes to complete (36

seconds minimum, 1261 maximum) and was fairly difficult: only 52% IR users and

54% Rookie users answered correctly.

7White and Roth [342, Chp. 5] note that ideally exploratory search evaluations would also
measure depth of learning and understanding; however, task time is a good place to start.

121

Rookie’s evaluation simulates a practical task that a journalist might undertake

in learning about a new subject: either to write an “explainer” piece8 or to research

the historical context for current events.

6.3.2.2 Experiment design

We employed a between-subjects design with U.S. users from Amazon Mechanical

Turk, placing fifty workers into a Rookie group and fifty workers into an IR group

and comparing their task completion times and other behaviors. Turkers had a max-

imum of 30 minutes to complete the task, much more than the roughly 15 minutes

required.9 We limited our study to U.S.-based users.

For each group, the study began with a few short screening questions, checking

to make sure that workers had their volume turned on and were using a laptop or

desktop (this version of Rookie is designed for these modalities). Rookie users also

practiced interpreting a timeseries graph by explaining why mentions of Afghanistan

might have spiked in the New York Times in 2001 and 2002. Each group then watched

a short video explaining their interface and task.

During iterative prototyping (§6.4), we observed that it takes a few minutes to

learn to use Rookie. Thus the final preliminary phase for the Rookie group was

a practice session to learn the Rookie interface on a different corpus of articles

mentioning “Cuba”. During this tutorial, users practiced manipulating T to select T

= 1994–1995 and then answered a question about the U.S and Fidel Castro during

this time period. After this session was complete, users then were given the main task

with the Haiti corpus. This helped ensure the main task was measuring how long it

took users to find answers using Rookie, as opposed to learning how to use it. IR

users did not practice using their interface.

8e.g. http://www.vox.com/2015/9/14/9319293/syrian-refugees-civil-war

9Amazon suggests giving workers a generous maximum time limit so that they do not feel rushed.

122

http://www.vox.com/2015/9/14/9319293/syrian-refugees-civil-war

Users then attempted to answer the question using Rookie or IR. In each case,

users saw the question and answers on a panel on their screen as they completed their

work. To better constrain the task, we presented each group of users with interfaces

already loaded with a useful pre-filled query, rather than relying on users to think of

such queries themselves. We set Rookie to user state (Q =“Betrand Aristide”, Q′

=“United States” and T =1987-2007) which selects 830 documents—and we loaded

IR with the query “Betrand Aristide United States” which selects 841 documents.

For the IR system, we disabled the search button during the task—users were not

allowed to change the query, but could use datepickers to zoom in on certain dates.

For Rookie, users could not change Q or Q′, but could vary T . Thus, this experiment

measures well Rookie’s linked temporal browsing and Snippet Summary help users

learn the answer to a question, it does not measure other aspects of the full Rookie

UI.

Users were instructed to research until they were reasonably confident in their

answer, then submit a response. They were also required to copy and paste two sen-

tences from Snippet Summary to support their multiple choice selection. By requiring

evidence, we avoided junk responses and signaled to participants that answers will

be scrutinized, following best practices [187] for user interface studies conducted via

MTurk. In the analysis below, we analyze time to completion in cases where workers

answered the question correctly, in order to ensure we are measuring “good faith”

[187] attempts to complete the task.

6.3.2.3 Results and analysis

Limiting our results to the 26 workers who found the correct answer with the IR

system and 27 workers who found the correct result with the Rookie system, we find

Rookie users complete the task faster. We show results below, in seconds. While

there is considerable variation within each group, Rookie users, on average, com-

123

pleted the task 166 seconds faster (using 37% less time); the difference is statistically

significant (p = 0.003, t-test or p = 0.001, non-parametric Mann-Whitney test).

Mean Std. Dev.

Rookie 285.1 (169.8)

IR 451.0 (217.5)

0
3
6
9

0
3
6
9

rookie
ir

0 500 1000
seconds

co
un

t

We also observe that the fastest IR user completed the task in 210 seconds, but

12 Rookie users finished faster than that. Interestingly, the choice of system did not

affect accuracy of the results; roughly half of both groups got the question right, and

among users who submitted incorrect answers, completion times were similar (232

(149) vs. 460 (277)).

Examining system logs for Rookie and IR, we find that 25 successful (i.e. an-

swered the question correctly) IR users opened individual news stories for inspection

(viewing 6.4 stories on average) while only 7 successful Rookie users opened indi-

vidual stories for inspection (viewing 2.0 stories on average). This suggests that IR

users solved the task by reading documents, but Rookie users solved the task by

reading summaries. Interestingly, the most frequently requested document by Rookie

users, which describes how Aristide fled Haiti in 2004 ahead of U.S. troops, was not

requested by a single IR user. The headline and Whoosh snippet for that document

only describe the United States, not its relationship to Aristide. In contrast, for that

document, Rookie’s Snippet Summary shows a sentence that describes the U.S. and

Aristide. Rookie users were able to find relevant information within this document.

124

6.4 Discussion

Natural language processing researchers have developed many techniques for ex-

tracting entities, relations, events, topics or summaries from news text.10 Such work,

in the words of Jonathan Stray [320], sometimes “discusses journalism as a potential

application area without ever consulting or testing with journalists”. Rookie is one

of a handful of projects, including Vox Civitas [88] and Overview [43] which seek

apply work from the NLP research community using feedback and input from actual

readers, writers and editors.

During development, we consulted with three reporters, two news editors, a jour-

nalism professor and a new media applications developer. We spent nearly 18 months

testing features and modifying the design before we began formal user testing. Sev-

eral crucial themes emerged from this process. We strongly suspect that these lessons

would apply to others seeking to join journalism and NLP.

6.4.1 Practical systems should handle NLP failures with grace

Early versions of Rookie attempted to produce authoritative summaries of queried

documents. One early version of Snippet Summary attempted to combine multiple

phrases and sentences from across documents without line breaks (similar to Zagat11

reviews). Another early version showed only the top N topics in Subjects Summary ,

or the top N sentences in Snippet Summary , without pagination. These designs were

well-intentioned: we hoped to cut through “information overload” [304] and present

users with only the most important data.

However, users reported confusion and frustration with our first attempts. They

did not understand Rookie’s long and sometimes incoherent summaries—and they

were annoyed when Rookie only showed the top 5 most important sentences or

10Eisenstein [100] offers a broad introduction to NLP.

11e.g. http://www.zagat.com/r/franklin-barbecue-austin

125

phrases for display. In the first case, we had trouble accounting for discourse effects

in summaries, so sentences strung together into a long summary did not necessarily

make sense as a whole. In the later case, we attempted to create an authoritative,

fixed-width summary (either with a list of 5 terms or a list of 5 sentences), without

allowing users to expand the summary as needed using pagination (as in the current

design).12

Because NLP systems are not able to produce perfectly well-formed summaries

which include the most salient information in text, we argue that it is important to

design summarization interfaces which are robust to NLP errors. In Rookie, we

did this by (1) splitting each extracted sentence into a standalone snippet (protect-

ing against ungrammatical or semantically nonsensical multi-sentence summaries)

and (2) allowing for pagination (protecting against poor computational judgments

about importance). Informal feedback improved. This insight about summarization

generalizes to other sorts of software that uses NLP judgements for computational

journalism, such as newsroom software which uses NLP to find entities, extract events

or resolve coreference. Designers and developers must build systems which can handle

inevitable failures [10].

6.4.2 Text visualization should allow drill down to actual words

Early versions of Rookie’s time series graph simply showed the frequencies of

stories through time, without the rich interactions described above. However, in

testing Rookie, we found that users assumed that they could manipulate the time

series graph to drill down for more detail, and were confused when they could not do

so. One editor explained: “It is useful to see how many stories appear in a given month.

But that is not clickable. How are you helping the user by providing information that

they can’t act on”?

12We also heard similar feedback on early versions of the ClioQuery interface (§7).

126

We thus modified the time series graph to allow users to move smoothly from

visualization to underlying text. Again, informal feedback improved. We think that

this insight might also be applied to other text visualizations like metro maps [303],

entity–relation graphs [317] or t-SNE plots of word distances [333]. In particular,

popular time series frequency visualizations such as the Google N-Grams Viewer13 or

New York Times Chronicle14, which show the frequency of a word or phrase through

time, could be improved with some form of textual drilldown like a KWIC view or list

of underlying documents. As Görg et al. [126] explain following years of development

of one text analytics system, “interactive visualization of connections between entities

and documents alone cannot replace the reading of reports”. Such experiences with

Rookie informed our work on the Document Viewer component in ClioQuery(§7).

6.4.3 NPs, not entities (or topics)

Many text previous systems have sought to help users explore and make sense

of documents [242, 317, 169, 88], including software specifically designed for news

archives [98, 348], software specifically designed for reporters [43], and software fo-

cused on evolving topics though time [92, 79, 80, 203].

All such systems extract some interesting aspects of text, and present them to users

for visualization and navigation. Some find and display entities and relationships.15

Others find and display learned word clusters or “topics” [92, 79, 80, 203], sometimes

arranged in a hierarchy. A third approach relies on manually-created tags [98, 348].

Each of these established method has limitations. State of the art NER systems

[115, 97] incorrectly tag or fail to recognize entities. Learned topics can miss categories

13https://books.google.com/ngrams/graph?content=mobile

14http://chronicle.nytlabs.com/?keyword=mobile

15e.g. https://www.media.mit.edu/projects/news-graph/overview/ or https://neo4j.
com/blog/analyzing-panama-papers-neo4j/

127

https://books.google.com/ngrams/graph?content=mobile
http://chronicle.nytlabs.com/?keyword=mobile
https://www.media.mit.edu/projects/news-graph/overview/
https://neo4j.com/blog/analyzing-panama-papers-neo4j/
https://neo4j.com/blog/analyzing-panama-papers-neo4j/

defined by domain experts, or generate topics that do not make sense [65]. Human

annotation is expensive and often infeasible.

Rookie thus takes a very different approach: find noun phrases (NPs) and let

the user quickly browse them, drawing attention to co-occurrence relationships and

phrases in context. This rapid browsing replaces topical term clustering or relation

identification in other systems for exploring news text. NPs have many advantages

over entities and topics. Unlike topics, NPs can be expressed concisely and understood

quickly, without reading and interpreting lists of (possibly nonsensical) words from

a topic model. Moreover, where inference for a topic model incurs latency (a major

disadvantage in a user-facing system), simple lists of important NPs can be generated

very quickly in response to user queries. This is discussed further in §6.4.4. Similarly,

unlike NER and relations, NPs can be extracted with very high accuracy, which is

vital to user-facing systems, where nonsensical output from NER systems may confuse

users unfamiliar with NLP. Additionally, where NER systems require a predefined

ontology, NPs work without configuration on many corpora (§2), offering the fine-

grained specificity of entity–relation systems without specialized annotations or a

predefined knowledge base.

Note that unlike the NER systems that are usually more popular in computational

journalism [320, p. 4], NP extraction is less tied to annotation decisions in labeled data

and imposes fewer assumptions about the semantic types needed for an application.

In Rookie, NPs included valuable concepts like “eye doctor” or “Assad family”, which

are important to understand queries like Q = “Bashar al-Assad”, but which do not

refer to the sort of concrete entities which typically serve as the basis for conventional

NER systems.

The particular justification and theory for Rookie’s Subjects Summary extrac-

tion method is discussed in earlier chapters (§2), following an active area of NLP re-

search in automatically identifying “important” phrases in corpora, sometimes called

128

keyphrases [62], multiword expressions, or facets [319]. We consider Subjects Sum-

mary an application of faceted search; see Hearst [151] for more discussion of this

user interface technique.

6.4.4 Speed, correctness and interpretability are not optional

In designing Rookie, we required that each UI component could be generated

quickly, interpreted easily by ordinary users, and would never make a mistake in

presenting some semantic representation of the underlying text. These requirements

proved useful.

Speed. Heer and Shneiderman [153] have pointed out that “To be most effective,

visual analytics tools must support the fluent and flexible use of visualizations at

rates resonant with the pace of human thought.” We followed this advice in build-

ing Rookie. In particular, NLP has developed many techniques for summarization

which require several seconds of compute time [229], which is much too slow for use in

a UI. During the design process, we implemented one such method [83] using a mul-

tithreaded implementation in C which employed CVBO [13], a variational method

for rapid inference for topic models. Our implementation still proved too slow for

interactive use. The trouble is that if summarization code runs on the server, then

each time a user adjusts Q, Q′ or T , Rookie must (a) make a call across a network

to fetch a new summary (b) wait for the server to generate the summary and (c) wait

for the reply. Such latency costs are unacceptable in user-facing applications. Fast,

approximate summarization techniques [229] which run client-side in the browser are

an exciting possibility for future research.

Correctness and interpretability. Rookie’s time series is considerably simpler

than other text visualizations proposed for news archives, many of which show evolv-

ing themes across time [92, 79, 80, 203, 147]. This was a deliberate design choice.

Rookie’s line charts showing a single lexical item certainly cannot represent clusters

129

of related vocabulary words or “topics”, nor can they show the relationships between

such topics. However, accurately summarizing topical relationships and their evolu-

tion is an AI-hard research challenge. Because Rookie was designed for real world

use, we chose a visualization technique that could not confuse or mislead users by ex-

tracting and displaying nonsense clusters or missing important topics in the text. We

show that Rookie’s simple line charts improve user understanding, and we welcome

such demonstrations for other more complex approaches.

6.5 Conclusion and future work

Rookie began as an effort to create a useful tool for news reporters. Because we

set out to develop a user-facing software system, in building Rookie, we were forced

to address and design around some of the shortcomings of modern NLP techniques.

While we eventually were able to apply language engineering methods to build a tool

which measurably helps end users quickly complete historical sensemaking tasks, our

experiences presenting NLP methods to real users helped us define broader design

goals, outlined in Section 1.5. Many of these design goals also proved important in

the ClioQuery system, described in Chapter 7.

130

CHAPTER 7

CLIOQUERY

Synopsis

In this chapter, we describe the design, development and implementation of Clio-

Query, a system for lexical corpus analysis built to help historians answer research

questions from newspaper archives. To create ClioQuery, we first investigated the

search needs of historians and archivists, and then used our understanding of such

needs to inform the design of a custom interface which helps historians gather and

analyze the comprehensive set of all mentions of a lexical query in a corpus.

Our work on ClioQuery demonstrates how text simplification methods from

Chapter 3 and Chapter 4 can be applied in a user-facing system. During a field

study evaluation and qualitative interview evaluation, we found that experts could

use ClioQuery’s text simplification features to answer substantive questions based

on their own research. In particular, some explained how system features designed

to support rapid query-focused lexical corpus analysis offered an advantage over tra-

ditional keyword document search tools. Such results suggest a role for text simplifi-

cation in future lexical systems.

7.1 Introduction

Newspaper archives are fundamental resources for historians, librarians and social

scientists [55, 8], because they offer a detailed primary source record of how social

processes evolve across time [276]. For instance, social researchers have used news

archives to examine vital questions such as why the United States abolished slavery

131

A B C

D

E

F G

J

IH

K

Figure 7.1: ClioQuery, an interactive text analytics system for helping histori-
ans investigate queries in news archives. Features (letters A to K) include: (D) a
Time Series View showing the frequency of a user’s query through time, (H) a linked
Document Feed showing a skimmable query-oriented summary of every mention of
the query in the corpus, and (I) a linked Document Viewer showing a selected news
story, with text from the query-oriented summary highlighted in yellow. Section 7.4
describes the full system, explaining each feature.

[114] and how different jurisdictions slowed the spread of the 1918 flu [223]. While his-

torians are known to use archives in different ways (e.g. sequential browsing [8]), prior

work reports that historians often look for “specific keywords” [8, p. 2] in newspaper

corpora. For instance, scholars in history and social science journals describe track-

ing down and reviewing occurrences of words like “William Benbow” [282], “Frances

Maule” [313], “watermelon” [37], “Japanese beetles” [307], “refugee” [275], “Loving”

[161], and “race suicide” [213] in news archives to help answer questions about society.

In this work, we describe such search terms (e.g. “William Benbow”) as queries and

we describe each exact occurrence of a query in an archive as a query mention. (Sec-

tion 7.9 discusses possible improvements to exact string matching.) We then describe

the task of locating query mentions as mention gathering, and the closely-related

132

task of reviewing and drawing conclusions from mentions amid surrounding text as

mention analysis.1

Mention gathering and mention analysis have not been carefully explored in ex-

isting work on interactive text analytics. Instead, many prior systems often focus

on offering overviews of corpus contents (Section 7.2). For instance, many systems

including Termite [63], TIARA [203], Overview [43], and ConVisIT [162] show users

groups of thematically-related words using word cluster displays to suggest broad

topics across documents. Others show users textual summaries [233, 21], or time

series graphs of word frequencies [147, 286] to help users survey large corpora. Such

overview features may help users form questions or define queries when exploring new

texts. However, they are not designed to help users who already know what to search

for, and wish to review specific query terms in underlying documents. This need is

common among historians [8, p. 2], and has also been reported among journalists

[320] and intelligence analysts [126].

Yet while prior text analytics systems are not specifically designed for mention

gathering and analysis, it is certainly possible to use some but not all existing systems

for this purpose. For example, although tools like Termite [63] or Overview [43] lack

features to gather and analyze query mentions, in principle, a historian could use

Jigsaw’s list view [317] to identify documents containing some named entity, and then

click, open, and scroll through such documents one-by-one in the Jigsaw document

view to find and review mentions of the entity.

In practice however, social researchers like Shinozuka [307] and others [282, 313,

161, 37, 275, 213] often use traditional keyword document search engines such as

ProQuest [279] to gather and analyze mentions in newspaper archives and other cor-

pora. (In this work, we use corpus and archive interchangeably; we assume the corpus

1Using terminology from prior work [277], it is possible to interpret mention gathering as a kind
of information foraging and mention analysis as a kind of sensemaking.

133

is an archive.) Keyword document search engines return relevance-ranked document

lists in response to a free-text query. Because such systems are widely used in histor-

ical practice [8, 282, 55, 313], we propose that keyword document search systems are

baseline tools for mention gathering and analysis (see Section 7.2.2.1).

Regardless of whether a historian uses a specialized interactive text analysis tool

like Jigsaw, or a baseline search engine like ProQuest, performing mention gather-

ing and analysis by opening and reviewing individual documents has two downsides.

First, because almost all words are very rare (a well-known property of text [357]),

any given query will very likely appear only a small number of times within a docu-

ment. Therefore, finding and analyzing query mentions by reading whole documents

requires examining many passages that will not directly mention the query. While

search within document features (e.g. control + F in Chrome [70]) can certainly

help, gathering and analyzing mentions still requires opening each article in its own

window or tab,2 locating mentions within the article, reading passages which mention

the query, and integrating information from such passages with existing knowledge,

before moving on to the next document in the corpus. This means that the user

must context switch across stories as they perform a multi-step process to gather and

analyze query mentions, mentally or otherwise keeping track of information from one

document as they jump to the next (see Figure 7.2). Navigating between documents

is thought to impose cognitive costs in keyword document search tools [105, 351], and

context switching across views is thought to impose cognitive costs in visual analytics

systems [340].

2Showing a single document in a single window or tab is a common interface pattern. It is
employed, for instance, in the Overview [43] and Jigsaw [317] document viewers, and in traditional
search user interfaces, which often link to individual documents from a main search engine results
page [77, Section 6.3].

134

User study Num. participants Total hours
Needfinding study to guide system design (Sec. 7.3) 5 4.5
Expert interview study (Sec. 7.5) 5 5
Field study (Sec. 7.7) 2 5

Table 7.1: This work presents three separate user studies with historians and
archivists. Section 7.3 describes institutional approval. Tables 7.4, 7.6 and 7.7 de-
scribe the backgrounds of participants in greater detail.

Noting the importance of historical investigation and the limitations of existing

approaches, we propose the ClioQuery text analytics system3 to help historians in

their practice of mention gathering and analysis. We designed ClioQuery in col-

laboration with historians and archivists, using iterative prototyping [121] and user-

centered design techniques [290], while drawing from prior study of the information-

seeking behavior of historians.

Because our needfinding investigations revealed the importance of comprehen-

sive review in historical research (Section 7.3.2.2), ClioQuery includes a skimmable

summary showing every single mention of a user’s query term across a corpus. Such

summaries are designed to reduce reading burden and context switching, by condens-

ing all query mentions into a single interface view, using techniques from natural

language processing (NLP). Additionally, because we found that historians require

transparency and contextual information in archive search, ClioQuery’s summaries

are presented alongside a linked full-text document view. Such linking is designed

to quickly and transparently show summary text within the context of full-length

source documents. Moreover, because temporal analysis is crucial to historians, Clio-

Query also includes an interactive overview visualization, designed to help users re-

view the frequency of query mentions through time. Together, through these and

other features (Section 7.4), our system offers a query-oriented approach to text ana-

3Clio [345] is a common prefix (e.g. ClioVis [48]), implying a connection with history.

135

lytics, which allows historians to quickly and easily gather and analyze query mentions

across an archive.

In total, our work offers the following:

• A synthesis of extensive prior research in text analytics (Section 7.2).

In reviewing prior work on interactive analysis of text across time, we found

that many efforts from the NLP, HCI and Visualization communities focus on

offering overviews of corpus contents. Such overviews might help users formulate

queries, but are not designed for mention gathering and analysis, when the user

already knows what to search for.

• An investigation into user needs and requirements (Section 7.3). To

build our tool, we translated prior research on historians’ information-seeking

behavior into concrete guidelines for system design. We also validated and con-

textualized prior work by conducting five needfinding interviews with historians

and archivists, and by gathering feedback on early prototypes. This process re-

vealed a need for transparency, trustworthiness, context and comprehensiveness

in archival tools, which might inform future work on historical search [311, 310]

and text summarization [82, 248].

• The ClioQuery system (Section 7.4). ClioQuery is an open-source text

analytics system designed for historians, which tests the idea of using text sum-

marization to reduce reading burden and context switching during mention

gathering and analysis. The system also uses linked views, in-text highlighting

and a time series plot to help experts quickly, comprehensively and transpar-

ently find and review query mentions across an archive.

• An evaluation of specific ClioQuery features (Sections 7.5 and 7.6). To

test the utility and usability of ClioQuery, we conducted an expert interview

study with five social researchers, who used the system to answer a historical

136

question from news archives. After methodically coding qualitative feedback, we

learned that many experts found ClioQuery’s skimmable summaries useful,

because they condensed documents to facilitate quick review of query mentions.

We also learned that linking summary text with underlying source documents

using in-text highlighting was essential, because it offered necessary context for

interpreting summary output.

• An evaluation of ClioQuery in the wild (Section 7.7). To test Clio-

Query in a realistic setting, we deployed the system in a field study with two

historians, who used ClioQuery to answer questions from their own research.

In comparing experiences with ClioQuery to prior experiences with keyword

document search systems, one historian explained how ClioQuery reduced

their reading burden, and another explained how text summarization features

facilitated rapid mention gathering and analysis.

We conclude by discussing our findings (Section 7.8), reviewing limitations and fu-

ture work (Section 7.9), and describing possible applications of features and ideas

from ClioQuery in other query-oriented settings, beyond historical research (Sec-

tion 7.10).

7.2 Related work

Historians sometimes gather and analyze mentions of specific query words in

archives (Section 7.1). However, much prior work from the HCI, Visualization and

NLP communities focuses on helping users gain high-level overviews of large bodies

of text. We review this overview-oriented literature in Section 7.2.1. In Section 7.2.2,

we also review another literature on search-based systems, which focus on retrieving

text from a corpus in response to a user query. This search-based approach seems

better suited to mention gathering and analysis, as search-based systems can help

137

1

2
3

44

5

6

(a) A user investigates Sally Ride by performing mention gathering and analysis using the New York
Times web archive [251], a baseline keyword document search interface (Section 7.2.2.1). They first
(1) click the top headline on the search engine results page (left) in order to (2) open a document in
a new tab (shown on the right) and then (3) scroll down to locate mentions of “Ride” in the linked
news story. The user reads and analyzes these mentions and then (4) context switches to the second
document by clicking the second headline on the results page. This (5) opens a new story in a new
tab. For this second document, they (6) use a search in document feature [70] (i.e. Control+F) to
help locate mentions of “Ride” within the story.

1

2

3

4

6
5

7

(b) A user (1) searches for “Ride” using ClioQuery and (2) sets the filter-by-count slider to limit
results to stories with at least two mentions of “Ride”. The user then clicks the expand/collapse
button on two news stories (3 and 4) to review all mentions of Ride from each story in the Document
Feed. They then (5) click one shortened sentence mentioning “Ride” (6) to read it within the context
of the full original document in the linked Document Viewer, with help from automatic in-text
highlighting. The user then prepares to (7) click expand to review additional mentions of Ride in
the next story.

Figure 7.2: Reviewing mentions of U.S. astronaut Sally Ride in The New York Times, using
ClioQuery (bottom) and a keyword document search tool (top).

138

historians find and review query mentions in a corpus. Much evidence (Section 7.1

and Table 7.2) also suggests that search-based systems are central to contemporary

historical practice.

In presenting prior work, we emphasize common user interface design patterns

[323], shared among multiple prior systems. Interface design patterns are “concrete

bundles of components” [324] that help a user achieve some task. We say that overview

design patterns help the user survey the contents of archives, and that search design

patterns help the user query for specific selections from a body of text. Table 7.2

offers a summary of major design patterns from prior work. Some individual systems

(e.g. Expedition [310]) may implement both overview and search patterns.

7.2.1 Overview design patterns

7.2.1.1 Word clustering

Because users often can not review every document in a large corpus, many prior

text analytics tools such as Termite [63], TIARA [203], Overview [43], RoseRiver [80],

TextFlow [79] and ConVisIT [162] try to suggest overall themes in a body of text, by

showing lists of thematically-related words from underlying documents. We describe

this approach as the word clustering design pattern.

Some systems which implement the word clustering pattern are based on prior

work from NLP, information retrieval, and text mining, focused on identifying and

representing patterns of co-occurring words using methods such as topic models [38]

and word embeddings [236].4 Researchers in HCI and Visualization extend this work

by considering how to present such patterns in a graphical interface; some systems

show changes in cluster patterns across time [203, 80, 79] (e.g. Figure 7.3a), others

4The system Themail [335] clusters words by time, instead of by co-occurrence statistics. Because
this system shows lists of related words (related by time period), we say the system implements word
clustering. Similarly, VisGets shows clusters (of document tags) defined by a user’s selection in the
interface [98], which we consider to be a form of clustering.

139

do not show time-based topics [63, 43]. Because automatic clusters may not match

a user’s mental model of a corpus, some work investigates human-in-the-loop tech-

niques, which allow users to modify and guide word and document clusters through

a GUI [165, 260, 306, 162].

Word clustering has a clear role in historical research. In query-oriented settings,

clustering methods may help the user formulate queries they had not considered [330].

Moreover, specialized and computationally-oriented digital humanists [240] and his-

torians [128] have used word clusters from topic models for historical literary analysis.

Nevertheless, successful application of topic modeling requires specialized knowledge

and extensive interpretive effort [28, 294], making this method less accessible to a

broader audience of historians. Additionally, many historians approach archives look-

ing for mentions of what Allen and Sieczkiewicz describe as “specific keywords” [8]

rather than looking to explore word cluster overviews from a topic model API. Be-

cause we design for historians investigating known query terms (Section 7.1), we do

not employ the word clustering pattern in the ClioQuery interface.

7.2.1.2 Textual summary

Rather than showing lists of related words to offer a corpus overview, a large

body of work on text summarization from NLP [82] instead attempts to create short

paragraphs which convey the most “important” information in a corpus, by selecting a

collection of sentences or sentence fragments from input documents to form an output

summary. (This is sometimes described as extractive summarization [82], because the

output text is extracted from input text.) User-facing systems such as Newsblaster

[233] and NSTM [21] apply this research by showing such textual summaries in a

graphical interface. We say that such tools implement the textual summary design

pattern (Figure 7.3b).

140

Like word clusters, traditional text summaries do not seem to help with mention

gathering and analysis. A user can’t turn to a traditional text summary to find

and review query mentions, because “important” sentences selected for inclusion in

summary output may or may not contain a given query word. Moreover, traditional

approaches typically do not explain how “important” information is chosen, which

may be important in the history domain (Figure 7.5 and Section 7.8.2).

However, two ideas from the traditional text summarization literature may help

historians perform mention gathering and analysis. First, work in query-focused sum-

marization tries to identify the most salient information in a corpus, based on a user’s

query [248]. Historians might use such query-focused summaries to review keywords

in text. Query-focused summaries which define all query mentions as important

enough to warrant inclusion in summary output may be especially helpful (see Sec-

tion 7.3.2.2). Second, work on sentence compression [189, 108, 109] tries to shorten

individual sentences by removing words, usually for the purpose of including more

(shortened) sentences in a fixed-length summary. These methods, or closely-related

sentence fusion techniques [27], might be used to shorten passages containing query

terms, to help users quickly review many mentions of a query in context. We apply

these two ideas from text summarization in ClioQuery (see Section 7.4.3 and 7.4.7).

7.2.1.3 Time series plot

Instead of showing text to summarize corpus contents, time series plots present

the frequency of documents or query-mentions across time to offer a visual (rather

than textual) corpus overview. This pattern is often implemented in text analysis

tools [286, 220, 88, 89] and keyword search systems [310, 225, 253]. We divide time

series visualizations into two groups. One group [235, 311, 225] shows the frequency

of a single query term across time (e.g. Figure 7.3c), often using a line chart. Another

group shows the frequency of multiple terms (e.g. highest-count words) using a stacked

141

Overview
patterns
(Sec. 7.2.1)

worker

labor
parts

truck

car
van

environment

nafta
Clinton

Canada
Mexico

auto
environment

pollution

1988 19921990 1994

chemicals

protection

laws
benzene

regulation

NAFTA

ocean
toxins

benefitsword cluster

(a) Word clustering (Sec. 7.2.1.1)

Examples: [80, 43, 63, 260, 306, 162]

 Summary of 129 documents

• Senior trade officials from the United States,
Canada and Mexico failed here this
weekend to reach agreements

• The North American Free Trade Agreement
drew a bitter reaction tonight from unions

• Nafta that caused them to lose their jobs

 Sources

⁃ 'Progress' but No Accord In 3-Nation ...
⁃ Reaction; After Vote, Labor Is Bitter ...
⁃ Sour Taste of Nafta: Old Friends Become ...

(b) Textual summary (Sec. 7.2.1.2)

Examples: [233, 232, 21]

1988 19921990 1994

NAFTA, WTO

NAFTA

WTO

(c) Time series plot (Sec. 7.2.1.3)

Examples: [147, 235, 286, 30]

Search
patterns
(Sec. 7.2.2)

Nov 17, 1993NAFTA and the National Interest
That is what the NAFTA vote is ultimately about…

Dec 31, 1988US and Canada: Model Marriage?
Before NAFTA Mexico was self-sufficient in corn and

Oct 6, 1992Free Trade, but With Time Bombs
Bill Clinton has given his long-awaited answer on free

Date: Jan 1, 1988 - Dec 31, 1994

NAFTA

(d) Keyword search (Sec. 7.2.2.1)

Examples: [251, 150, 160, 253, 73, 286]

ho criticized pro-NAFTA votes. Tonight will te

ongress do with NAFTA as it pleased. Unles

 As a trade pact, NAFTA helps the economy

 prices will fall But NAFTA's most important pri

 matter of politics NAFTA was too important to

 That is what the NAFTA vote is ultimately ab

NAFTA

(e) Multi-doc. snippet (Sec. 7.2.2.2)

Examples: [208, 262, 286, 335]

Figure 7.3: We define five major user interface design patterns from prior work de-
voted to helping users understand news archives and other corpora (Section 7.2).
Three of the design patterns focus on helping users gain an overview of archive con-
tents (top two rows). Two of the design patterns focus on helping the user to search
for specific documents or passages from a corpus (bottom row). Following Tidwell
[323], this figure presents prototypical wireframes of each design pattern, created by
the authors of this work. Each example above shows a system presenting results
from 129 documents matching the query “NAFTA” on a corpus of New York Times
editorials published between 1988 and 1994.

142

area chart [147, 30], and may not require a user-supplied query. While time series

plots alone can not be used for mention gathering and analysis because they do not

show underlying text from a corpus, such visualizations can hint at important events

or changes across documents (e.g. Michel et al. [235]). We implement this design

pattern in ClioQuery (Section 7.4.2).

7.2.2 Search design patterns

7.2.2.1 Keyword document search (baseline)

Traditional keyword document search tools return relevance-ranked lists of docu-

ments on a search engine results page (SERP), in response to a free-text query [216].

Because historians often use such tools in practice (Section 7.1), we consider these

systems to be baselines for mention gathering and analysis.5

Although keyword document search tools are widely used (Table 7.2), these sys-

tems have clear downsides for finding and reviewing query mentions. First, key-

word document search systems impose unnecessary burdens from reading and context

switching. This is described in detail in Section 7.1. Additionally, keyword document

search systems rank documents according to a computational model of relevance,

which may be undesirable for historians as relevance-ranking introduces opaque al-

gorithmic influence over qualitative conclusions (by guiding users towards particular

documents). Section 7.3 describes the importance of neutral and comprehensive re-

view in historical research.

Ranking aside, keyword document search tools may also shape user perceptions

of the contents of the individual documents in an archive, through displaying single-

document summaries (also called query-biased snippets [325]) on the search engine

5One strand of humanities scholarship critically investigates how widespread adoption of keyword
document search tools might be distorting traditional humanistic research [282, 313, 330].

143

Rel. ranking Filter by Date Known users

Chronicling America X X I3, I4, I5,P4, H1

Newspapers.com X X I1,P1, P4, H2

New York Times Search X X I3, I4, I5,P1,P5,H1, H2

ProQuest X X I1 to I5, P1, P3, P4, P5, H1, H2

Table 7.2: Example baseline keyword document search systems, featuring relevance-
ranked search engine results pages and filtering by date; such features are common
in many news archive interfaces [99]. Tables 7.4, 7.6, and 7.7 further describe known
users. Above, we use I1 to I5 to indicate all interviewees.

results page.6 For example, Figure 7.3d displays three sample single-document sum-

maries, showing what a computer deems to be the most important information from

three different search results. Such single-document summaries may be inappropriate

for historical research, as some historians may be skeptical of opaque models which se-

lect “important” information for their review (search engines try to include keywords

in snippets, but do not try to explain summaries [77, Section 6.3.1]). Figure 7.5

describes our own experiences attempting to apply similar document summarization

techniques for historians without success.

7.2.2.2 Multi-document snippet

Where keyword document search systems return links to single documents in

response to a user query, other systems return collections of smaller units like para-

graphs, sentences or character spans, which are often drawn from multiple documents

(see Figure 7.3e). We observe two different implementations of this multi-document

snippet design pattern in interactive text analytics.

First, multi-document snippet features can be used in word clustering systems

to help the user investigate mentions of particular clustered words in context. For

6Google sometimes shows complex results snippets on the SERP, using proprietary techniques.
Brin and Page briefly mention the need for such “Result Summarization” in their original paper [46,
Section 6.1].

144

example, TIARA [203] allows analysts to review individual words from a cluster in un-

derlying text. However, because TIARA is designed for showing broad themes rather

than for reviewing query mentions, it does not comprehensively show all mentions of

a given word in its multi-document snippet. Instead, TIARA chooses some selection

of mentions for display, optimizing for diversity [203, Section 6]. Such curation may

introduce unwanted algorithmic bias (Section 7.3.2.4), because the system chooses

some but not all query mentions for display.

Additionally, other text analysis systems which are not necessarily focused on clus-

tering sometimes include keyword-in-context (KWIC) views [286, 262], showing each

mention of a query word (or a selection of such mentions) on its own line of text, amid

immediately surrounding tokens or characters (e.g. Figure 7.3e). While this form of

multi-document snippet can be used for mention gathering and analysis, KWIC views

have some limitations for historical research. First, in many cases, historians need

to investigate particular query mentions within the context of full documents (Sec-

tion 7.3.2.3). While KWIC views may include links to underlying sources, jumping

from KWIC views to documents requires context switching into new windows or tabs

to gather and analyze evidence. We explain why this is undesirable in Section 7.1.

Second, KWIC views always show some number of pixels, characters or words im-

mediately surrounding each query mention. This may result in awkward-sounding or

choppy snippets that do not include the most salient information in source sentences;

evidence suggests that users dislike awkward-sounding snippets [66]. Finally, KWIC

views do not offer a way to keep track of which mentions have been reviewed during

analysis, which may be important in historical research (Sections 7.3.2.2 and 7.4.5).

Noting these shortcomings, it is possible to interpret certain ClioQuery features

(Section 7.4.3 and 7.4.4) as a particular form of KWIC view, addressing some of

these limitations.

145

7.3 Current practices, user needs and design requirements

In Section 7.1, we document a common practice of mention gathering and analysis,

in which historians find and then review mentions of specific keywords in newspaper

archives. We then offer evidence which suggests that historians often perform this

work using keyword document search systems, which require the user to undertake

unnecessary reading and context switching. Noting these limitations, we study the

needs of historians (Section 7.3.1) in order to define requirements for a text analytics

system (Section 7.3.2), designed for mention gathering and analysis.

7.3.1 Observing and analyzing user needs

We identified user needs by collecting and analyzing two different sources of data,

described below.

7.3.1.1 Observing needs from existing literature

First, we studied user needs by reviewing a large literature from history, library

science and information science devoted to the systematic study of the digital and

non-digital information-seeking behavior of historians (Table 7.3). This work is largely

unknown in computer science disciplines like NLP, IR, VIS and HCI. In our study, we

seek to translate its descriptive findings—focused on how historians find information—

into actionable design requirements for user-facing software. To identify this litera-

ture, we followed citations starting from Allen and Sieczkiewicz’s paper “How His-

torians use Historical Newspapers” [8], which we first found via a search on Google

Scholar. In total, we reviewed and took notes on six prior studies describing surveys

and interviews with 1002 historians (Table 7.3).

7.3.1.2 Observing needs from interviews and feedback on prototypes

We additionally supplemented, contextualized and validated existing studies by

conducting five of our own one-on-one needfinding interviews (Table 7.4) on Zoom

146

Author(s) Venue Study type Participants

Allen and Sieczkiewicz [8] Proc. ASIS&T (Info. Science) Interview 8
Case [51] The Library Quarterly Interview 20
Duff and Johnson [95] The Library Quarterly Interview 10

Chassanoff [55] The American Archivist Survey 86
Dalton and Charnigo [81] College & Research Libraries Survey 278
Duff, Craig, and Cherry [94] The Public Historian Survey 600

Table 7.3: A selection from prior work in library science and information science,
focused on the information-seeking behavior of historians. These papers describe
studies of N = 1002 historians (in total).

video chat over a period of three months.7 All but one interview was 60 minutes

long. (We met with I4 for 30 minutes, due to limited availability.) User interviews

proceeded in two phases. During Phase A, in the initial exploratory stage of our

work, one researcher from our group interviewed I2, I4 and I5, who we recruited

through convenience sampling [124]. The interviewer asked open-ended, exploratory

questions about needs and practices, and solicited feedback on early prototypes. The

researcher also took detailed notes. Later, when we better understood how historians

find information in archives, we began Phase B. During this phase, the same researcher

conducted two one-on-one, video-recorded, semi-structured interviews with I3 and I1,

who also provided feedback on later prototypes. We recruited I3 and I1 via email

outreach.8 The researcher again took detailed notes. We include the interview script

in supplemental material. In total, each of the five interviewees across Phase A and

Phase B reviewed a different iterative prototype. In the interest of space, we only

7All three of our user studies—needfinding interviews, expert interviews, and field study (Sections
7.3.1, 7.5, and 7.7 respectively)—were approved as exempt from review by our institution’s human
subjects IRB office. All participants received a $50 Amazon gift card for their time.

8We emailed five PhD students in history at a nearby university. Each student expressed interest
in media, archives or science in describing their work on their department’s web page. We also
emailed all members of the editorial board at a history journal. We do not list the name of the
university or journal to ensure interviewees remain anonymous.

147

present feedback on what we consider to be the two most important prototypes, shown

in Figure 7.4 and Figure 7.5.

7.3.1.3 Analyzing observations of user needs

Following data collection, one researcher qualitatively analyzed and organized

notes and transcripts to articulate four overall user needs, and translate these needs

into four corresponding design requirements (described in Section 7.3.2). In general,

we found that feedback from needfinding interviews and feedback on early prototypes

was very consistent with findings from prior work. Nevertheless, our own needfinding

interviews helped to contextualize and translate prior descriptive findings on histori-

ans’ information-seeking behaviors into actionable guidelines for system design.

ID Research experience Library experience University role Gender Field

I1 5-10 1-5 PhD Candidate Male History
I2 0 20-30 Librarian Female Lib. Science
I3 10-20 0 Junior Faculty Female Am. Studies
I4 10-20 10-20 Archivist Male Lib. Science
I5 10-20 10-20 Librarian Non-binary History

Table 7.4: Interviewees in our needfinding study. We list research experience and
library experience as a range of years. We abbreviate American Studies as Am.
Studies and Library Science as Lib. Science.

7.3.2 Needfinding results and design requirements

Following data collection and data analysis, we defined four design requirements

(R1-R4), based on four user needs. We describe each requirement below.

7.3.2.1 R1: A system should show an overview of change over time

Prior study of the information-seeking behavior of historians emphasizes the theo-

retical importance of “the dimension of time” [51] in historical research, and also em-

phasizes historians’ practical need to perform “searching and narrowing by date” [8].

In our needfinding interviews, historians and archivists also stressed the theoretical

148

and practical importance of time-based investigation. “Time is always a historian’s

first move,” I3 explained. “It’s about change over time as the fundamental thing.”

I5 noted: “Historians are often trying to find articles within a specific date range and

about a specific topic ... research often starts with a keyword and a date range and a

source or list of sources.” Because historical research involves studying change across

time, I2 explained how time series plots showing the frequency of query words by time

period (see Figure 7.3c) are often useful for gaining a temporal overview of a corpus.

“Bar charts [or line charts] by time are really helpful,” I2 explained, “because news

has these peaks where a topic becomes important and then dies down.” Such charts

“help people trace an idea or series of ideas or terminology over time.” Observing the

centrality of temporal analysis in historical research, we assert a design requirement

(R1): a historical search system should show a navigable overview of change over

time. Showing a temporal “overview first” [153, 308] adapts known best practices for

interactive data analysis to the history domain.

7.3.2.2 R2: A system should help users comprehensively review mentions

Prior work often emphasizes the importance of gathering comprehensive evi-

dence during historical research. “Comprehensiveness is clearly the highest priority

in searching a database,” one study concludes [81], explaining that 70% of 278 survey

respondents would prefer to spend time filtering out irrelevant material than run the

risk that relevant material “might fall through the cracks” in a limited search. Never-

theless, some historians in prior work acknowledge that truly comprehensive search

is an impossible goal. “I never think I’m going to be able to read every record in the

archives,” one reports [95]. “I’m always creating priority orders of what I think is

going to be most useful.”

Our interviewees similarly emphasized the importance of comprehensiveness in

gathering and evaluating historical evidence. “The most important thing for histor-

149

Figure 7.4: An early prototype of ClioQuery, displaying and highlighting every
single mention of the query term “Aristide” in New York Times articles mentioning
“Haiti”. “Are we showing too much information in this interface?” one researcher
from our group asked I4, when presenting the prototype. “This is literally every
mention of your query term.” “No this is good,” I4 explained, “because of what I was
calling the type II error concern [i.e. the fear of missing relevant material]. When
I see something that is trying to decide or curate for me that is a worry. That is a
red flag.” However, I4 went on to explain how the interface needed to provide more
context and transparency surrounding highlighted snippets. “With this design you
have to click or read each snippet to see if it is relevant,” he said. “The snippets are
valuable and good but very small and you have to look at the contents of the article.
Sometimes you can eliminate that by just quickly scanning the article title ... there
needs to be a way to provide the information in a more transparent way.” (The search
bar shown at the top is non-functioning mockup; the “0” on the left hand side is a
placeholder.)

ical researchers is to be confident that they are being exhaustive” said I4. “I want to

know I can be confident I have been able to access everything relevant. Did my search

cast a wide enough net?” I4 also praised an early prototype (Figure 7.4) for display-

ing a very large number of potentially relevant passages. “The biggest fear is Type II

error,” he explained. “In doing searches, am I missing something that is crucial but I

150

don’t know because I never looked”? Similarly, I5 explained that it is important to “be

as completist as possible” in historical research. “The thing about historians....they

want to be as comprehensive as possible with their topics.” Citing the importance

of comprehensiveness, I5 expressed deep skepticism about an early prototype which

omitted some information to form a summary (Figure 7.5). However, like some in-

terviewees in prior work, I2 pointed out that truly comprehensive investigation may

not be possible. “Ultimately,” she noted, “there is a limit in terms of time and money

for any given project”. Because historians often search archives for mentions of a

query (Section 7.1), we translate the need for comprehensive archival search into a

second design requirement (R2): a system should help users comprehensively review

all query mentions in a corpus.

7.3.2.3 R3: A system should present as much context as possible

Prior work sometimes emphasizes the importance of context in historical study,

and newspaper archive research. “Building context is the sine qua non [indispensable

condition] of historical research,” Duff and Johnson write [95]. “Without it historians

are unable to understand or interpret the events or activities they are examining.”

These authors explain that that historians (1) need to understand the broader his-

torical context for any specific event, (2) need to understand the broader context

surrounding creation of any given archive record (i.e. in the words of one historian,

“who is writing it and why” [95]) and (3) need to understand the context surrounding

the creation of any given archive record. “You can’t have the specific facts without the

context,” one historian similarly explains, in a separate study [8]. “Where an article

is in the paper, and what surrounds it, matters.” Similarly, historian Adrian Bingham

[36] cautions that “newspapers were materials that we were bought, read and passed

around.” Because keyword search returns news stories “plucked out of their context”,

151

he advises that these tools “should be used in conjunction with, rather than replacing,

the careful study of whole newspapers”.

During our needfinding interviews, historians and archivists also repeatedly em-

phasized the importance of contextual information in archive news search. The job of

a historian is to “put facts in context” I5 said. A historian will need to “contextualize”

facts from a periodical by examining its publishers and audience. Similarly, I4 noted

that “as an archivist I do research to give context to collections.” Finally, I2 stressed

the importance of contextualizing evidence in archive search software. “Who does

the New York Times have writing this?” I2 asked, while examining an early Clio-

Query prototype (very similar to Figure 7.5). “Where does each sentence occur in the

document? What section of the newspaper? You need to show more context”. Observ-

ing the importance of context in historical research, we assert a design requirement

(R3): a system should present as much context as possible for any given record in an

archive. In this work, we adopt historians’ use of the term context to refer to both

the text surrounding any given sentence or paragraph in an article, and to refer to

the structured (e.g. publication date, headline) and unstructured (e.g. related articles

during time period, other articles on newspaper page) contextual metadata for any

given news story.

7.3.2.4 R4: A system should be as neutral as possible

Prior studies of the information-seeking behavior of historians underscore the need

for trustworthy tools that transparently present digital archival materials in a neutral

manner. For instance, in one study [94], historians report that each digital source must

be “accurate, undistorted and complete,” explaining that each source is “not edited in

some way.” Similarly, in another study [55], a historian explains that direct “access

to the original image of the primary source rather than to a transcribed version” is

important “especially when there is no description of what rules they used to transcribe

152

Figure 7.5: An early prototype of ClioQuery, which used traditional, optimization-
based text summarization methods from natural language processing [229] to try
and select the most salient information from a given time period for display (see
Section 7.2.1.2). This prototype selects four most “important” articles (shaded in
light yellow in the feed below), to summarize the hundreds of articles mentioning
the query “Bertrand Aristide” in The New York Times from May 20, ’93 to June
18, ’95 (shown shaded in light yellow in the time series above). I5 strongly disliked
this approach, prompting a shift towards interfaces emphasizing transparency and
trustworthiness. “I need to know what is included and why,” I5 explained. “I need
to know why it is showing this limited view.” I5 continued, “I am wary of algorithms
that choose for me what the important facts are. I am a PhD historian. Leaving stuff
out. We are taught to be critical of that.” Ultimately, I5 noted, “History is written by
the victors. What actually matters is what people choose to put in the timeline.” We
theorize that I5 could not trust the prototype because it seemed to lack the capacity
to select important facts or the integrity to adhere to historical research principles;
prior work in HCI (e.g. SMILY [50]) assumes that in order to earn user trust, a system
must both have the capacity to help the user and the integrity to adhere to principles
which are important in a given domain.

153

documents”. This historian reports that they do not trust and can not interpret

electronic transcription, and thus must rely on direct observation of digitized images

to draw conclusions.

In our interviews, historians and archivists similarly described the importance of

transparently presenting digitized archives in a neutral manner. “When I see some-

thing that is trying to decide or curate for me that is a worry. That is a red flag,”

I4 explained (see Figure 7.4). Similarly, I2 added, “I think the system should be as

transparent as possible. I need to distinguish between what some primary source is

saying versus what the computer thinks a primary source is saying.” I5 also cited the

importance of transparency and trust in expressing deep skepticism about an early

prototype (see Figure 7.5).

Yet, even as some interviewees stressed the importance of unbiased, transparent

and trustworthy presentation of archive evidence, I3 reported that, in practice, histor-

ical researchers do trust ranked results from keyword document search systems. She

explained that many historians might not realize that black-box document rankings

from a keyword document search tool will affect conclusions from archival research.

Nevertheless, because many other historians frequently expressed commitments to

direct and neutral observation of archive evidence, in designing new archive tools, we

assert a design requirement (R4): search software should show archive evidence in a

maximally transparent and trustworthy manner.

7.4 System

We designed and implemented ClioQuery via iterative prototyping [127], while

studying the needs and practices of historical researchers (R1-R4, see Section 7.3).

We hypothesize that ClioQuery’s novel combination of query-focused text sum-

marization, linked views, in-text highlighting, and history tracking can help experts

154

quickly, comprehensively and transparently gather and analyze the comprehensive set

of all query mentions in a news archive, to help answer historical questions.

7.4.1 High-level system description

The ClioQuery web interface presents results from a Boolean search [216, Chap-

ter 1], which returns the unranked set of documents mentioning a query term in a

corpus. (We say a document or passage mentions Q if it contains an exact string

match for the query term Q. The exact string match is called a query mention. Sec-

tion 7.9 discusses possible extensions to exact string matching.) When a user enters

a single-word query Q into the search bar at the top of the interface (Figure 7.1A),

ClioQuery identifies all documents mentioning Q and presents the documents using

three linked views [49]. First, ClioQuery includes a Time Series View, showing

a graphical overview of the count of documents mentioning the query by year (Figure

7.1D). Second, ClioQuery includes a Document Feed view, presenting all query

mentions from across all documents in a single scrollable window (Figure 7.1H). Fi-

nally, ClioQuery includes a Document Viewer, which shows the full text of a

single document from the corpus, with individual query mentions from the document

highlighted in context (Figure 7.1I). ClioQuery also includes a filtering system

to help users narrow the set of query mentions shown in the interface (Figure 7.1B,

C and F), and a history tracking system to automatically monitor and display

reading history during comprehensive search (Figure 7.1G). All features in the inter-

face also follow a coordinated color coding scheme. For instance, the user’s query

word is always displayed using the purple query color in the Document Feed and

Document Viewer, and the Time Series View also uses a purple line to represent query

frequency (Figure 7.1D). We consider the color-coded bolding of query terms to be

one form of automatic in-text highlighting [141] throughout the ClioQuery in-

terface. Automatic in-text highlighting draws user attention to some word, phrase

155

or passage in text by automatically setting the text’s foreground color, background

color or decoration (e.g. bolding). The Appendix describes our process for selecting

a colorblind safe and print-friendly palette. It also provides additional engineering

details about our implementation of ClioQuery.

7.4.2 Overview first: a Time Series View (R1)

Because change across time is central to historical research (R1), ClioQuery presents

a navigable Time Series View (Figure 7.1D) showing query frequency by year across

a corpus. Displaying such an “overview first” [308, 153] is a known best practice in

interactive data analysis. In ClioQuery’s Time Series View, the x-axis represents

time and the y-axis represents the count of documents mentioning a user’s query dur-

ing a given year (Section 7.2.1.3 describes similar plots in other systems). If a user

also enters a subquery (Section 7.4.6), ClioQuery’s Time Series View also shows the

annual count of documents mentioning both the query and subquery. In Figure 7.1D,

ClioQuery displays one line showing the count of documents mentioning the query

term in the purple query color, and another line showing the count of documents men-

tioning the subquery term (as well as the query term) in the green subquery color

. ClioQuery’s time series plot also shows a single rug point (small vertical line)

for each document mentioning the query, just beneath the temporal x-axis (Figure

7.1E). Such rug points allow the user to easily preview and navigate to individual

news stories (we describe these interactions in detail in the Appendix).

7.4.3 A Document Feed for comprehensive search (R2)

During needfinding, we found that experts often emphasized the importance of

gathering comprehensive evidence (Section 7.3.2.2), and also often search for specific

query terms in news archives (Section 7.1). We thus designed ClioQuery’s Docu-

ment Feed to help such users easily gather and analyze the comprehensive set of every

single mention of a query term in a collection of news stories (R2). We assume the

156

user is working with a small corpus (or small set of documents from a larger corpus),

where such comprehensive review is possible. (This assumption is appropriate for

our use case; for instance, Black reviews roughly 500 documents to analyze the racial

history of “watermelon” [37] and MacNamara reviews 605 documents to analyze “race

suicide” [213].)

After a user issues a queryQ, ClioQuery populates the Document Feed to show a

comprehensive, skimmable, summary of the query across the corpus (Figure 7.1J). To

create the summary, ClioQuery shortens each document mentioning Q and then

displays shortened documents in chronological order. To shorten each document,

ClioQuery first selects all sentences mentioning Q within the document, and then

shortens each sentence by removing words (see Section 7.4.7.1), without removing the

query. ClioQuery also automatically highlights the query word in the purple query

color within each shortened sentence. By shortening, highlighting and presenting

all sentences mentioning Q in this manner, ClioQuery creates a summary of all

mentions of a query across a corpus, in a single view, in a visually consistent format

designed for skimming (Figure 7.6).

Note that by default, ClioQuery displays a single shortened sentence from each

document beneath the document’s headline (Section 7.4.7.4 describes how the sen-

tence is chosen). To see all sentences mentioning Q within a document, the user can

click an “expand” button. The user can also click a star to bookmark a document in

the red bookmark color .

ClioQuery’s Document Feed is designed to directly address two of the limita-

tions of baseline keyword document search systems, described in Section 7.1. First,

by summarizing documents mentioning Q, ClioQuery is able to fit more query

mentions in limited screen space, reducing the need for context switching across indi-

vidual windows or tabs. For instance, in Figure 7.1, the Document Feed saves the user

from having to open 239 separate documents during comprehensive review. Second,

157

 … that "he runs great risk not only to himself, but to his institution and his country" if he
continues to defy the United Nations. During the evening rush hour here on Monday, Reynold
Georges, a former Senator who leads a small opposition party, was shot as he was driving on
Route Delmas, one of the capital's main thoroughfares. Mr. Georges was in hiding today, but
his wife said "men in uniform" riding in the back of a pickup truck drew up alongside him and
fired two bursts from automatic weapons, striking him once in the back. The attack came
shortly after Mr. Georges, who initially supported the military coup in 1991 that overthrew the
Rev. Jean-Bertrand Aristide, the elected President, gave a television interview in which he said
it was imperative that General Cedras give up power, even if it meant "taking him in chains"
out of Haiti. Hours earlier, American officials said, a police and paramilitary force attacked a
crowd waiting in line outside a downtown movie theater used to process the application of
Haitians seeking refuge in the United States. Several applicants were forced …

…. Reynold Georges a former Senator … was shot ….

 Mr Georges was in hiding today….

 Georges … said it was imperative … Cedras give up power

Maximum 60 characters

Figure 7.6: ClioQuery’s Document Feed uses text simplification methods from natu-
ral language processing in conjunction with color-coded, automatic, in-text highlight-
ing, in order to summarize query mentions in a visually consistent format designed
for skimming. Here one portion of one document (top of stack, left) containing three
mentions of the query term Q=“Georges” has been shortened into a summary of
“Georges” (right). To create this summary, ClioQuery extracts each of the three
sentences mentioning “Georges” and simplifies them to render shorter sentences that
are fewer than 60 characters long. In this figure, for illustration, spans of tokens
from one source document included in the summary are shown with italicized and
underlined text. In typical use of ClioQuery there are often hundreds or thousands
of documents containing Q (shown as document stack, above left).

Text to read Number of tokens
All documents with Reagan and Duarte 222,544 tokens
All mentions of (i.e. sentences with) Reagan or Duarte 49,382 tokens
All shortened mentions of Reagan or Duarte 28,859 tokens

Table 7.5: This table shows (from top to bottom) the count of tokens in 239 documents
containing containing the words Reagan and Duarte (Figure 7.1), the count of tokens
in all sentences mentioning Reagan or Duarte within such documents, and the count
of tokens after ClioQuery applies sentence simplification. Sentence simplification
removes 87.0% of tokens from all documents, and removes 41.6% of tokens from all
sentences. Counts are from the Salvador corpus (see Appendix).

by selecting sentences mentioning the query from documents, and removing tokens

from those sentences, ClioQuery reduces the user’s reading burden. For instance,

in Figure 7.1, the user has queried for documents mentioning Reagan and Duarte

(in this example, Reagan is a subquery; subqueries are described in detail in Section

7.4.6). By selecting and simplifying sentences, ClioQuery removes 87.0% of the to-

kens in all documents mentioning these two words (Table 7.5). We include a detailed

description of ClioQuery’s text simplification techniques in Section 7.4.7.

158

7.4.4 A linked Document Viewer for necessary context (R3, R4)

Because historians need to evaluate evidence in context without black-box algo-

rithmic influence (R3, R4), we anticipated that ClioQuery users would need to

quickly review shortened sentences from the Document Feed within the context of

underlying news articles. Therefore ClioQuery’s Document Feed is closely linked

with a corresponding Document Viewer, which shows the complete text of a sin-

gle selected document from the corpus (Figure 7.1I). After a user clicks a shortened

sentence in the Document Feed, the Document Viewer updates to show the entire doc-

ument mentioning the sentence. ClioQuery also automatically scrolls the document

so that the (just clicked) simplified sentence is visible on screen.

ClioQuery also makes it easy for users to locate simplified sentences, by us-

ing automatic in-text highlighting to further link the Document Feed and Document

Viewer. All simplified sentences in the Document Feed are shown with yellow back-

ground highlighting in the Document Viewer. Additionally, if a user hovers over

a sentence in the Document Feed or Document Viewer, the mention is highlighted

in dark yellow hover color in each component (shown in Figure 7.1J and 7.1K).

We hypothesize that linking between shortened text and full documents helps build

user trust for summaries, because it helps experts transparently see and understand

how shortened mentions are drawn from underlying text. This feature is inspired by

CommunityClick [171].

7.4.5 Color-coded history tracking for systematic review (R2)

Some historical researchers emphasize the importance of comprehensively exam-

ining all available evidence during research (R2). To support historians in this work,

ClioQuery keeps track of which documents the analyst clicks in the Document

Feed and opens in the Document Viewer. ClioQuery also keeps track of book-

marked news stories (Figure 7.1J), and displays a simple stacked horizontal bar chart

159

(Figure 7.1G) showing the proportions and counts of read, unread and bookmarked

documents. The bar chart uses the read , unread , and bookmarked color scheme

employed across the color-coordinated interface. (ClioQuery considers all docu-

ments to be either read but not bookmarked, unread or bookmarked. We do not

allow intersection between these sets.) For instance, Figure 7.1G shows 5 read, 89

unread and 5 bookmarked documents. The user can click check marks (Figure 7.1G)

to show or hide documents in each category.

ClioQuery’s Document Feed and Time Series View use the same color scheme

to help users quickly identify opened and unopened documents. Stories that a user

has already clicked appear with grey read text in the Document Feed, and their

corresponding rug points are shown in grey in the Time Series View. For instance,

in Figure 7.1, the user has read the story published on Jan. 9, 1985. The story is

greyed out in the Document Feed, and its corresponding rug point is shown in grey

beneath the time series plot. Similarly, there are five red rug points in Figure 7.1E,

because the user has bookmarked five documents.

Note that ClioQuery’s history tracking is query-dependent; tracking resets each

time a user issues a new query, unlike the history tracking mechanism in some prior

work [169, Section 6]. Such query-dependent tracking is appropriate for ClioQuery,

because the system is designed to help historians review all mentions of some specific

keyword in a corpus. We hypothesize that this feature offers experts assurance they

have comprehensively reviewed all mentions of a given query, and leave exploration

of other forms of history tracking for future work.

7.4.6 Filter instead of rank, to avoid confounds (R4)

Some prior text analysis systems designed for historians (e.g. Expedition [310])

attempt to answer keyword queries by ranking documents to direct users towards

most-relevant news articles. Because such ranked retrieval might introduce unwanted

160

algorithmic influence over the expert search process (R4), ClioQuery instead re-

sponds to queries with Boolean search, which returns the unranked set of all doc-

uments mentioning a query term. (The Document Feed shows such documents in

chronological order.) ClioQuery then allows users to narrow down unranked search

results with a filtering system, consisting of three filter controls.

The filter-by-date control selects documents by time period. After users select

a start date and end date from date pickers at the top of the interface (Figure 7.1B),

ClioQuery updates to show only those documents mentioning the query published

during the selected interval. (Historians are often interested in specific time periods;

see Section 7.3.) In Figure 7.1B, the user has filtered to documents published in

1983–1985.

The filter-by-subquery control allows users to select documents that mention

some additional word, called a subquery. For instance, after a user queries for the Sal-

vadoran leader “Duarte” they might wish to further narrow results to understand the

relationship between “Duarte” and his ally U.S. President Ronald Reagan. To inves-

tigate this question, the user can enter the subquery “Reagan” to select all documents

mentioning the word “Duarte” which also mention the query word “Reagan” (Figure

7.1C). We included this feature because complex Boolean queries are often popular

with experts [216, Section 1.4]. More complex Boolean expressions are possible in

future work.

The filter-by-count control filters results based on the the number of times a

query term is mentioned in a document. When a user adjusts the filter-by-count

slider to some value K ∈ {1, 2, 3, 4, 5}, all components of the interface update to

show only those documents with K or more mentions. In cases where a user has set

a subquery, the filter-by-count control allows the user to select documents with K

or more mentions of the subquery. For instance, in Figure 7.1F, the user filters out

documents which contain fewer than three mentions of the subquery “Reagan”.

161

ClioQuery also helps users quickly see the count of query terms within docu-

ments using square-shaped, query-colored count markers, shown beside each doc-

ument headline. Count markers use brightness to encode the count of a query term

within a document. For instance, count markers for documents with more mentions

of a query term have a darker purple color than count markers for documents with

fewer mentions. If a user enters a subquery, count markers show the count of the

subquery within each document, using shades of the subquery color (as in Figure

7.1F and 7.1H). This feature is inspired by TileBars [150].

7.4.7 Sentence simplification to help summarize a query

7.4.7.1 Overview of sentence simplification in ClioQuery

ClioQuery’s Document Feed displays a query-focused summary of a user’s query

and subquery, by first extracting and then simplifying sentences mentioning query (or

subquery) words. To simplify sentences, we turn to sentence compression techniques

from the text summarization literature in NLP (introduced in Section 7.2.1.2). These

methods try to summarize naturally occurring input sentences by removing words,

to create shorter and well-formed output sentences, which contain the most salient

information from the input. (A well-formed sentence is one that sounds natural,

rather than garbled or choppy [298].) In particular, we turn to a specific class of

sentence compression methods, which can ensure that simplified sentences both (A)

fit within limited screen space in a user interface and (B) mention the user’s query

term or subquery term. Such methods are appropriate for ClioQuery because each

line in the Document Feed has a fixed width, and must include some mention of the

user’s query or subquery.

More concretely, we use a query-focused clause deletion [143, 140] method to

shorten sentences in cases when a user has entered a query (Section 7.4.7.2), and

also use relationship span extraction [139] in cases when a user has entered both a

162

query and subquery (Section 7.4.7.3). We also employ a final fallback approach, char-

acter windowing, when it is not possible to shorten a sentence using other techniques

(Section 7.4.7.2). In the next sections, we describe each sentence shortening method

in greater detail, and then conclude by describing how ClioQuery handles cases

when more than one technique might be used to shorten a given sentence (Section

7.4.7.4).

7.4.7.2 Query-focused clause deletion, and character windowing

ClioQuery’s Document Feed requires shortened sentences that mention Q and

fit within available screen space. We assume that such shortenings should also be

well-formed and contain the most salient information from longer source sentences.

Prior research in IR suggests that users prefer well-formed snippets [66], and prior

work in sentence compression [189, 107, 109] strives for both well-formedness and

salience. We also assume that methods for constructing shortenings must run with

low latency, which is known to be important in user-facing analytics systems [205].

Different sentence shortening techniques might optimize for and manage tradeoffs

between such requirements. But in this work we turn to a simple query-focused

clause deletion method to meet such criteria, allowing us to focus on how to apply

text summarization methods in user interfaces for historical research.

Query-focused clause deletion exploits the fact that natural language sentences are

sequences of words, which exhibit hierarchical and nested grammatical structure [32].

For instance, the sequence “She swims in the pool” can be divided into interrelated

word groups, with specific grammatical relationships; the words “in the pool” form

a prepositional phrase that modifies the verb “swims.” To represent such linguistic

structure, clause deletion employs a dependency parse tree [259] grammatical formal-

ism. A dependency parse is a directed tree graph with one vertex for each word in

163

the sentence, along with a latent root vertex.9 Each subtree in the parse corresponds

to a constituent subsequence in the sentence. The sentence simplification literature

sometimes describes such subtrees as clauses [108]. Figure 7.7a shows an example

dependency parse.

Sentence simplification via clause deletion shortens sentences by iteratively delet-

ing clauses from a dependency parse.10 Figure 7.7 shows how one sentence is shortened

by iteratively deleting two clauses. Unlike sentence compression techniques which

consider individual tokens for removal (e.g. Filippova et al. [109]), deleting clauses

naturally identifies and removes groups of related words. For example, a single dele-

tion could remove the prepositional phrase “after the election,” or a much longer word

group with more modifiers and embedded clauses: “after the previous election last

year, which went poorly.” Shortening sentences via clause deletion also makes it easy

to ensure that output sentences must include Q; clauses that contain query mentions

are not allowed to be removed during deletion.11

To try and create well-formed output sentences, ClioQuery turns to prior work

on clause deletion [143, Section 6], which has found that in general removing more

clauses from an input sentence makes it less likely that the resulting output sentence

will be well-formed. Thus, to shorten an input sentence, ClioQuery’s clause dele-

tion first identifies those candidate output shortenings that can be constructed by

removing at most K clauses from the input (without removing Q), and are also short

enough to fit in one line of text within the Document Feed. Because in practice it is

9We use the UD (v1) dependency formalism [259]; other related formalisms allow for non-tree
parses [296]. Eisenstein [100, Chapter 11] offers a broad introduction to dependencies. We perform
dependency parsing using Stanford CoreNLP [217, 57].

10Tokens from the remaining tree are then printed in left-to-right order, based on their position
in the original sentence.

11It is also possible to enforce such query constraints using integer linear programming (ILP).
However, ILP-based sentence compression techniques (e.g. Clarke and Lapata [67]) are NP-hard
and have been shown to be orders of magnitude slower than other iterative approaches to query-
focused sentence compression [140].

164

Like Mr. Conable a number of moderates harbor deep reservations about the Reagan tax plan

(a) An untyped dependency parse tree of an input sentence mentioning Q=“Reagan.”

a number of moderates harbor deep reservations about the Reagan tax plan

(b) To simplify the sentence, ClioQuery first removes the clause (subtree) “Like Mr.
Conable.”

a number harbor deep reservations about the Reagan tax plan

(c) In this step, ClioQuery removes another clause that does not contain Q.

Figure 7.7: Sentence simplification via query-focused clause deletion [140, 143]. Clio-
Query removes two subtrees from a dependency parse across two steps to simplify
the input sentence (7.7a) into the output sentence (7.7c).

often possible to dramatically shorten an English news sentence by removing only one

or two large clauses (for example, a lengthy relative clause, such as “Reagan met with

the envoy who was sent by the ...”), ClioQuery only considers shortenings which

can be constructed by removing 0 < K ≤ 2 deletions.12

To try and ensure that output shortenings include the most salient information

from input sentences, ClioQuery then returns the candidate output shortening with

the highest tf-idf score [216]. Tf-idf scores are often used in extractive sentence

compression [67, 108] and text summarization [82] to identify salient information for

inclusion in summary output; the metric identifies words which occur with unusual

frequency (relative to the overall corpus), which is an important signal of salience

12In addition to encouraging well-formed output, this strict limit ensures low latency for the user.
For a sentence M words long, the worst case for performance is a tree where all words are leaf
vertexes, resulting in M +M(M − 1)/2 possible outputs of K = 1 or 2 deletions. But in typical
trees, there are far fewer possible deletions because: (1) the query word and all its ancestors are not
allowed to be deleted, (2) after the first deletion of a clause length C (i.e., the size of the deleted
subtree) only M − C candidates remain for the second deletion, and (3) if ClioQuery finds any
candidate shortenings using K=1, it won’t search for candidates using K=2, as shortenings which
remove fewer clauses are more likely to be well-formed. We do not consider cases where K = 0, as
most unshortened news sentences are too long to fit within the Document Viewer.

165

in summarization [249]. The Appendix includes details of how we compute td-idf

in ClioQuery to identify words which occur frequently in documents mentioning a

query.

In some cases, there is no way to shorten a sentence by removing one or two clauses

while ensuring that that output sentence mentions Q and will fit in the Document

Feed. In these circumstances, ClioQuery resorts to shortening the sentence by

extracting the span of N characters to the left and right of Q in the sentence, where

we maximize N under the constraint that the resulting character span will both fit

in Document Feed and respect word boundaries. We use this character windowing

method only as a last resort because it may cut off syntactic constituents (e.g. show

only a portion of a prepositional phrase), which may create awkward-sounding output.

Section 7.4.7.4 describes how often ClioQuery uses this fallback, during an example

run of ClioQuery.

In the future, it might be possible to shorten more sentences with query-focused

clause deletion by considering candidate output shortenings that are created using

more than K = 2 deletions. (Prior work on query-focused clause deletion does not yet

offer an efficient solution for considering such candidates [143].) Because the number

of candidates grows with K, developing algorithms which efficiently search over pos-

sible outputs or learn greedy deletion policies based on data (e.g. with reinforcement

learning) might offer useful starting points.

7.4.7.3 Relationship span extraction

ClioQuery users who search for a query term Q can also filter query results

by a subquery. When a user enters both a query and a subquery term, we assume

that they are broadly interested in how these two terms are related in the corpus.

For instance, a user might query for the Salvadoran leader Q=“Duarte” and apply

166

Probability that
“Reagan sent congratulations to Mr. Duarte”

expresses a relationship between Reagan and Duarte

�(✓ · x) = .73

<latexit sha1_base64="L/EJvrF2P+z7yofqhq4e4Mctj+w=">AAACHXicbVDLSgMxFM3UV62vUZdugkWoCGVGC9WFUHDjsoJ9QKeUTCZtQzOTIbkjlqE/4sZfceNCERduxL8xfSxq64GQwzn3cu89fiy4Bsf5sTIrq2vrG9nN3Nb2zu6evX9Q1zJRlNWoFFI1faKZ4BGrAQfBmrFiJPQFa/iDm7HfeGBKcxndwzBm7ZD0It7llICROnbJ07wXkoLnSxHoYWi+1IM+AzLCHg0k4HnncXR6XSxfdOy8U3QmwMvEnZE8mqHasb+8QNIkZBFQQbRuuU4M7ZQo4FSwUc5LNIsJHZAeaxkakZDpdjq5boRPjBLgrlTmRYAn6nxHSkI93s9UhgT6etEbi/95rQS6l+2UR3ECLKLTQd1EYJB4HBUOuGIUxNAQQhU3u2LaJ4pQMIHmTAju4snLpH5edEvFq7tSvnI2iyOLjtAxKiAXlVEF3aIqqiGKntALekPv1rP1an1Yn9PSjDXrOUR/YH3/Ai61ooE=</latexit>

Learned weight vector

.21 .90 .05 -.71 -.01 .12…

Duartetocongratulations Mr.sentPresident and embassador
NNNV NN CCNN TONN

Thomas PickeringR.
+ 7

words

s

<latexit sha1_base64="XxxtDCjbh7LZwFiEjRJVxAQLGmc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmrpfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1arXzVqlfpPHUYQTOIVz8OAS6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f4oWNAw==</latexit>

Reagan

Sentences mentioning
Reagan and Duarte

across the corpus, including the
sentence s (top)

…

…

0

1

0

0

0

2

Number of verbs between Reagan and Duarte in s

Number of adverbs between Reagan and Duarte in s
Feature vector x

<latexit sha1_base64="/vrE197PVp4u7ZLL1Tup6NcRlvc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgapgRQd0V3LisYB/Q1pLJZNrQTDIkGbUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxvO+ndLK6tr6RnmzsrW9s7tX3T9oaZkqQptEcqk6AdaUM0GbhhlOO4miOA44bQfj69xvP1ClmRR3ZpLQfoyHgkWMYGOl+14geagnsb2yp+mgWvNcbwa0TPyC1KBAY1D96oWSpDEVhnCsddf3EtPPsDKMcDqt9FJNE0zGeEi7lgocU93PZqmn6MQqIYqkskcYNFN/b2Q41nk0OxljM9KLXi7+53VTE132MyaS1FBB5g9FKUdGorwCFDJFieETSzBRzGZFZIQVJsYWVbEl+ItfXiatM9c/d69uz2t1t6ijDEdwDKfgwwXU4QYa0AQCCp7hFd6cR+fFeXc+5qMlp9g5hD9wPn8AUSiTAQ==</latexit>

Feature extraction

✓

<latexit sha1_base64="RgSfyUdGgTbbtvPKRtjfHpVvPCQ=">AAAB/HicbVBPS8MwHE3nvzn/VXf0EhyCIIxWBupt4MXjBDcHaxlpmm1haVqSX4VS5lfx4kERr34Qb34b060H3XwQ8njv9yMvL0gE1+A431ZlbX1jc6u6XdvZ3ds/sA+PejpOFWVdGotY9QOimeCSdYGDYP1EMRIFgj0E05vCf3hkSvNY3kOWMD8iY8lHnBIw0tCue0EsQp1F5so9mDAgs6HdcJrOHHiVuCVpoBKdof3lhTFNIyaBCqL1wHUS8HOigFPBZjUv1SwhdErGbGCoJBHTfj4PP8OnRgnxKFbmSMBz9fdGTiJd5DOTEYGJXvYK8T9vkMLoys+5TFJgki4eGqUCQ4yLJnDIFaMgMkMIVdxkxXRCFKFg+qqZEtzlL6+S3kXTbTWv71qN9nlZRxUdoxN0hlx0idroFnVQF1GUoWf0it6sJ+vFerc+FqMVq9ypoz+wPn8AofKVWw==</latexit>

⌦(s,Reagan,Duarte)

<latexit sha1_base64="C2y3zZHCLRQeYwiUHCunELej8ig=">AAACsnicjVFLT9wwEHZCH7B9bcuxF4tVJZBWaYICtDckeuiNh7qA2KSriXcSLBwnsh3EKvIP5Npb/029YSvBbg8dyaPP38znGc9kteDahOFvz1979vzFy/WN3qvXb96+67//cK6rRjEcsUpU6jIDjYJLHBluBF7WCqHMBF5kN0fz+MUtKs0r+cPMakxLKCTPOQPjqEn/vk26R8aqyNI2DMLOhivAJsclFrCth5Y+kQRRuD+kQXwQOb8b7dvE4J1pO5/l7RlCAdJaO1ySxeGeE0RxPBfvhUuybw0og072v+3t2El/8PdGV0G0AAOysJNJ/1cyrVhTojRMgNbjKKxN2rrCnAm0vaTRWAO7gQLHDkooUadt146lnxwzpXml3JGGduxjRQul1rMyc5klmGu9HJuT/4qNG5N/SVsu68agZA+F8kZQU9H5/uiUK2RGzBwAprjrlbJrUMCM23LPDSFa/vIqON91gw++nsaDw2AxjnXykWyRbRKRA3JIvpMTMiLM++yNvJ/exI/9Kx989pDqewvNJnlivvgDiCvKxQ==</latexit>

Figure 7.8: Sentence simplification via relationship span extraction [139]. This
method predicts the probability that the span of tokens between the query and sub-
query words in a given sentence s will sound natural as a shorter and standalone
sentence. (If the predicted probability is high, the sentence can likely be shortened
to the span of tokens.) This figure shows the predicted probability that the token
span between the query Duarte and the subquery Reagan will sound natural as
a shortened sentence, when extracted from the longer sentence shown in Figure 7.1
(letter K). Seven words from s are not shown in the diagram above.

a subquery for the then U.S. President “Reagan,” in order to understand Duarte’s

relationship to Reagan (Figure 7.1).

To meet this information need, ClioQuery attempts to simplify long and com-

plex sentences mentioning both the query and subquery terms into short sentences

which concisely describe the relationship between the query and subquery. We de-

scribe the process of shortening sentences in this manner as relationship span extrac-

tion [139], because each shortened sentence is a token span (i.e. sequence of tokens)

extracted from a longer sentence. For instance, in Figure 7.1, we extract the span

“Reagan sent congratulations to Mr. Duarte” from the longer sentence “President

Reagan sent congratulations to Mr. Duarte and Ambassador Thomas R. Pickering

pledged United States support for further meetings.”

Relationship span extraction employs logistic regression to determine which sen-

tences can be shortened to express relationships. It extracts a vector x of linguistic

features from two input query words and input sentence s (e.g. is there a verb token

between query words in s?) and then passes the dot product of x and a learned weight

vector θ through a logistic function σ to return a predicted probability that the token

167

span between the query and subquery will sound natural when removed from the

sentence (Figure 7.8). The method is supervised using a sentence compression corpus

[107]. In ClioQuery we shorten a sentence s to a relationship span if the predicted

probability that the span sounds natural is greater than a threshold T = 0.5.13 We

implement with Scikit-learn [272].

7.4.7.4 Choosing among possible sentence shortening methods

The previous sections describe three different sentence shortening techniques,

which are applied in the ClioQuery interface. Below, we describe how Clio-

Query chooses to apply the three different methods.

After a user enters a query Q, for each document mentioning Q, ClioQuery’s

Document Feed displays the first sentence within the document mentioning Q that

can be shortened via query-focused clause deletion. If no such sentence exists, Clio-

Query resorts to shortening the first sentence mentioning Q via character windowing.

(Character windowing is only used as a last resort because it does not attempt to

create well-formed output containing salient words from the input.)

In cases when a user has entered both a query and subquery, for each document

mentioning the query or subquery, ClioQuery will attempt to display the first

sentence in the document that can be shorted via relationship span extraction. This

is because we assume the user is interested in the relationship between the query

and subquery. If there is no sentence that can be shortened via relationship span

extraction, ClioQuery will display the first sentence that can be shortened via

query-focused clause deletion. If no sentence can be shortened via clause deletion,

it will resort to shortening the first sentence mentioning the query or subquery via

character windowing.

13Setting a lower threshold T might increase the total number of shortened sentences, at the cost
of creating fewer well-formed extractions (and vice versa).

168

In Figure 7.1, ClioQuery uses relationship span extraction to shorten and display

some sentence from 31 out of 239 documents which mention “Duarte” and “Reagan”.

It uses query-focused clause deletion to shorten and display some sentence from 85

documents, and it resorts to character windowing for the remaining 123 documents.

ClioQuery also allows the user to click “expand” to see all sentences mentioning

the query within the document (Section 7.4.3). In this case, ClioQuery will first

attempt to shorten each sentence mentioning Q via query-focused clause deletion,

before resorting to shortening the sentence with character windowing. If the user

has also set a subquery (in addition to Q), ClioQuery will first try to shorten each

sentence mentioning the query and subquery using relationship span extraction (and

then attempt clause deletion, and character windowing).

7.5 Expert interview study procedure

After analyzing user needs (Section 7.3) and designing the ClioQuery system

based on such needs (Section 7.4), we conducted an interview study over Zoom video

chat to test ClioQuery with historians and archivists, who used the system to

investigate questions from news archives.

7.5.1 Recruitment, participants and corpora

We recruited five participants from two universities in the U.S., by emailing stu-

dents, faculty and staff listed on history and library department web pages. All

participants had advanced degrees (master’s or PhD) in history or library science,

much like the expected users of our system. We summarize the backgrounds of par-

ticipants in Table 7.6. Interviewees from our needfinding study (Section 7.3) did not

participate in our expert interview study, to avoid what Sedlmair et al. describe as

a potential form of bias [302]. Each participant in the interview study had an estab-

lished research or curatorial interest in some topic related to late 20th century or early

169

ID Research experience Library experience University role Gender Topic

P1 6 0 PhD candidate Male Iraq
P2 5 0 PhD candidate Male Zimbabwe
P3 4 0 PhD candidate Female combat
P4 20 0 Instructor/researcher Female wages
P5 0 3 History librarian Male copyright

Table 7.6: Interview study participants. We report history and library experience in
years.

21st century history, which we express as a single topic word (see Table 7.6). We iden-

tified this designated topic word based on each participant’s publication record and

professional web presence. Before each interview, we then loaded ClioQuery with

a corpus of New York Times (NYT) editorials14 published between 1987-2007 [292]

mentioning the designated topic word.

7.5.2 Data collection

To administer the study, one researcher from our group conducted five, one-on-

one, sixty-minute interviews over Zoom video chat. (See supplemental materials for a

detailed script.) During each interview, the researcher asked each participant to brain-

storm and then articulate a high-level research question, based on the participant’s

prior work (10 minutes). They then introduced the participant to ClioQuery via

a tutorial (7 minutes), asked them to investigate their research question using Clio-

Query (30 minutes) and concluded with a semi-structured interview (13 minutes).

Throughout, the researcher observed and recorded participant reactions and invited

participants to think-aloud [257] as they used the system. If a participant offered

feedback on some portion of the interface during their investigation (e.g. offered de-

tailed feedback on the Time Series View), the researcher did not ask about this topic

again during the semi-structured interview.

14Social researchers sometimes study editorials to better understand media sources [60, 209].

170

7.5.3 Thematic coding

The researcher who conducted the interviews analyzed automatic Zoom tran-

scriptions for each of the video recordings, and corrected transcription errors. The

researcher then extracted 183 quotes from across five interview transcripts. Each

quote consisted of a few sentences on a focused topic, along with the preceding ques-

tion or comment to provide context (e.g. a quote might discuss the Document Feed).

The researcher attempted to extract as many quotes as possible, excluding irrelevant

quotes (e.g. tutorial instructions).

The researcher then developed a codebook of six high-level codes (described in

Section 7.6), by grouping and re-grouping the 183 quotes to identify common themes,

much like the codebook-based approach described in Miles, Huberman and Saldaña

[237, Chp. 4].15 After each assigning each quote to exactly one of the six codes,

the researcher shared the codebook with an undergraduate coder with training and

experience in qualitative coding, who was not involved with the development of Clio-

Query. The second coder independently assigned codes to the same quotes, using

the codebook. The second coder was also invited to add new codes to the codebook

if needed, but reported that no new codes were necessary. (Thus we did not modify

the codebook.) We include a copy of the codebook in supplemental materials.

Following independent coding of each of the 183 quotes, the two coders met for

1 hour over Zoom video chat to discuss 41 disagreements, and attempted to reach

consensus via discussion. In 21 cases, the two coders were able to reach agreement

regarding the appropriate code. In 20 cases, the coders determined that disagreement

reflected genuine ambiguity in qualitative data, and agreed to disagree.

McDonald et al. [228, Section 2.2] use the term reliability to describe the extent

to which coders reach the same result from independent work, and use the term

15Miles, Huberman and Saldaña [237, Chp. 4] describe assigning codes in two phases; we assign
codes in a single phase.

171

agreement to describe the extent to which coders reach consensus after discussion.

Adopting this terminology, we measure the reliability of the two coders by computing

a Cohen’s κ = 0.724 (using the R psych 2.0 package [283]), and we measure the

agreement of the two coders by computing a κ = 0.855.

7.6 Expert interview study results

In this section, we describe the six themes that emerged from qualitative coding.

7.6.1 ClioQuery helps with historical sensemaking

While using ClioQuery, each of the five participants formed a question related

to their research (Table 7.6) and then collected and interpreted evidence to start to

answer their question, in a process Dalton and Charnigo [81] describe as historical

sensemaking. We observed that ClioQuery helped historians in this process, offering

partial validation for our hypothesis that ClioQuery features can aid historians in

their work (Section 7.4).

For instance, as part of his research, P1 studies New York Times news cover-

age from journalists embedded with United States military units in the Iraqi city

of Fallujah during the second U.S.–Iraq war. From prior study, P1 understood that

embedded U.S. journalists often published news stories reflecting the perspectives of

U.S. military leaders. But while examining mentions of “Fallujah” in New York Times

editorials using the ClioQuery interface, P1 expressed surprise when finding a more

nuanced perspective from the opinion desk. “I didn’t see nearly as much of the sort

of sensational depiction of Fallujah, and the militants in Fallujah [in editorials] that

I expect from embedded journalists [in news stories] ...” he reported.

Similarly, P2 used ClioQuery to find confirming evidence of shifting U.S. per-

spectives towards Robert Mugabe. As P2 expected, early New York Times editorials

from the corpus praised Q=“Mugabe” as a liberator, but then began to criticize “him

172

as a bad statesman, as a tyrant and a dictator.” P3 was likewise able to partially

answer a research question with ClioQuery. She explained that while she had “a

deep knowledge of [women in combat]. I don’t have a deep knowledge of what the

[NYT] editorial board has to say about it.” Using ClioQuery, she found evidence of

editorials using “the gendered trope that women are supposed to be wives and mothers.”

P5 also discovered an unexpected connection with musical copyright, while research-

ing a hypothesis surrounding literary copyright. “The parity [with the music service]

Napster that’s that’s really interesting ... That’s not something I thought about ... I

was thinking ... definitely more in literary items because that’s what I deal with.”

7.6.2 ClioQuery offers overviews and context

Participants offered detailed feedback on ClioQuery features during interviews,

which often matched our design goals for particular components of the interface. To

begin, three participants reported that ClioQuery’s Time Series View offered

a useful overview of the entire corpus, by directing their attention to salient time

periods. P1 said the Time Series View was an “easy way of visualizing” corpus trends,

and P5 suggested that the Time Series View might be helpful “when students are kind

of in that exploratory phase ... as a way of ... coming up with research questions.”

P4 offered similar feedback. “I really like this,” she said. “This looks really functional

and really useful. I like how there is quite a lot of information packed in.”

P1, P2 and P5 reported that the Document Feed was a useful feature of Clio-

Query, because it helped summarize query mentions. The Document Feed “con-

denses all of the essential information and sort of leaves out all the extra stuff,” said

P1. Said P2, “I found [the Document Feed] useful, especially the expand button. If I

click expand I can see a rundown of the mentions right after the title without seeing

the article.” P5 reported using the Document Feed to “do some ... simple kind of

topic modeling in my own head ... just to see if I could pull out any ... themes there.”

173

P5 added that, “having this here [i.e. Document Feed] is really helpful to kind of see

what they’re talking about.” P3 and P4 discussed the Document Feed while describ-

ing the importance of context in historical research; we include their feedback on this

feature in Section 7.6.4.

Several participants also reported that the Document Viewer helped during

their research. For instance, P3 reported that automatic in-text highlighting in the

feed was very helpful. “I’m a visual person. So I’m looking for the words. I like that

they’re in purple and green ... the words that you’ve given me the pop out ... and I

can see if it’s a pro or con article pretty quickly just from that.” P2 said he used the

Document Viewer to “provide detail.”

P1, P2 and P5 noted that ClioQuery’s linked Document Feed and Doc-

ument Viewer served complementary purposes. They described how the Docu-

ment Feed provided a summary of the query term, while the Document Viewer pro-

vided necessary and complementary details. “You need both [the Document Feed and

Viewer],” said P2. “With just the Document Feed I won’t be able to get the full picture

of the story. And with just the Document Viewer I will not be able to trace the men-

tions quite comprehensively and specifically.” P2 then added, “as a researcher, it’s

important to see things in detail. If you just conclude from what you see in the Docu-

ment Feed you are not going to get an objective picture of the context of the story line.

But if you see the Document Feed, see the mentions, see what they imply, and then

you want to understand the context of the story you are going to get to the Document

Viewer.” P1 said, “I like having both the Document Feed and the Document Viewer,

side by side. [The Document Viewer helps with] reading for more depth when I want

more depth and [the Document Feed] helps with ... quick scans pretty easy.” Similarly,

P5 explained, “I see [the Document Feed and Viewer] working together really well ...

I start by looking at the feed to kind of pick out the articles that would want to kind

of dive into deeper and then I go into the Document Viewer.”

174

P4 and P5 specifically mentioned that complementary linked views from the Docu-

ment Feed and Document Viewer helped withmention gathering and analysis, as

compared to a baseline keyword document search system. “A lot of a lot of databases

that we work with, do something similar to this [i.e. the Document Feed],” said P5,

while describing a search engine results page. “But you often then have to click on

the article to go into the article to get to that reading ... here it is nice that it was

just kind of next to it and you can scroll through it.” Similarly, P4 described the

difficulties of context switching between documents from the Google search engine

results page. “Obviously, it’s is a time saver” she said, comparing ClioQuery to the

keyword document search system. “You can tell ... just using the editorials at one

newspaper.”

Two participants relied on ClioQuery’s filtering system to investigate their

research topics. P1 investigated the NYT editorial board’s discussion of the query

term “Fallujah” using the filter-by-subquery feature (e.g. searching for “Fallujah” and

“resistance” or “Fallujah” and “terrorist”). “It’s pretty interesting to me that I get three

hits with the words Fallujah and resistance and only one with the word terrorist,” he

said. “That would suggest a certain orientation from the editorial board that will be

unexpected.” P2 found the filter-by-count feature very helpful. “Oh, this is good,” he

said, while testing out the slider. “It gets us through to the most important, the most

critical pieces that we want to read.”

7.6.3 Comprehensive review has high costs

During needfinding, interviewees emphasized the importance of comprehensively

reviewing all available evidence. However, to our surprise, during the expert interview

study, P4 explicitly disavowed an obligation to search comprehensively. “I don’t feel

like I have an obligation to look at everything,” she said. “I have an obligation to

get an overview and I think you know, with a completely unscientific measure of, oh,

175

I think I’ve got enough now.” Similarly, P1 commented that, “I don’t think anyone

actually does it [search comprehensively].” He went on “A lot of people pretend they

do it ... [but] in terms of like visiting archives ... everyone’s skimming ... they already

know what they’re looking for and they’re just trying to find it.” P2 pointed out that

comprehensive manual review was desirable but ultimately had high costs. “I am not

saying we should get rid of personal scrutiny, the way you do it yourself. [But] you

want to save time. If you do it [i.e. read] one-by-one it wastes too much time.” We

discuss ambiguity surrounding comprehensive review in Section 7.8.

7.6.4 Context is crucial, so some are wary of summarization

Like during needfinding (Section 7.3.2.3), participants often emphasized the im-

portance of context in historical research, using the word context both to describe

metatextual information (e.g. stories printed beside an individual article on a sheet of

newsprint, or information about a publisher) as well as textual information (e.g. infor-

mation described throughout an article, providing context for an individual fact). For

instance, P3 described extensive research to prepare for oral history interviews in or-

der to “get that context to be able to ask them the questions that I asked them.” P2 also

reported that context is “very important” for historians, as it “helps you understand

why things are what they are.”

Some users’ emphasis on context informed their feedback on the Document Feed.

While P1, P2 and P5 found the Document Feed useful (Section 7.6.2), P3 and P4

expressed reservations, because they felt they needed more context to reach conclu-

sions. P3 took the more extreme position. “For me, I don’t know if [the Document

Feed] is necessary,” she said. “As a history scholar, you can’t take things out of con-

text. You need to know the bigger context.” On the other hand, P4 reported that she

would need more context (i.e. longer extractions from news stories) before the feature

would be useful. “The more context I can take in within as compact a time frame

176

and compact a format, but sufficiently informative [the better]” she said. “But I think

these [shortened sentences in the Document Feed] might have to be longer for that to

work.”

7.6.5 Some report tradeoffs between neutral review and limited time

During needfinding and prototyping, interviewees often stressed the importance

of avoiding possible bias from software in historical research. But during our expert

interview study, P4 reported that she relied on black-box relevance models to direct

her attention while searching archives. “I do try to use the chronological sorting

[when using ProQuest],” said P4. “But it is ... too much to wade through. If your

corpus is reasonably big then you have to have a relevance kind of algorithm in there.

Otherwise, it’s just going to be too frustrating.” P4 also recognized that reliance on

ranking introduces confounds. “I think it would be appropriate to make people look

at all of the irrelevant stuff,” she said. “So they realize the algorithm is pulling the

relevant stuff for you ... but you can’t make the search s*** for people just to sort of

make that point.”

On the other hand, P5 liked how ClioQuery used filtering to avoid potential

bias. “I think it’s better that its just showing everything,” he explained. “I prefer

having everything there to kind of whittle down ... as opposed to having certain things

like cherry-picked ... I guess it’s never super clear to me why certain things might be

moved to the top of results ... it raises questions about how things are ordered and

how they’re brought to light.”

As I3 predicted (Section 7.3.2.4), P1 described relying on the search function of

the New York Times website [251], without understanding how the site was ranking

search results by relevance. “I wasn’t super aware of how they were pulling up articles

for me ... They rank it in terms of views right?” he said. He added, “I just don’t, you

177

know, have the knowledge of how to navigate these ... search engines well enough.”

We discuss heterogenous feedback on algorithmic bias in history in Section 7.8.3.

7.6.6 Access, integrity and integration in current practices

Many participants commented on the importance of access, integrity and integra-

tion in describing their current practices with newspaper archives (see also Section

7.9). P1 reported gathering news articles on U.S.-Iraqi relations from around the

web “for years” by using search engines like Google or the New York Times website

[251], saving these articles to the Internet Archive [71] and then organizing this col-

lection using the software program Omeka [74]. This participant pointed out that

ClioQuery “assumes you have found all the stuff you want to work with,” which is

not true for his current research. P2 said that he had to rely on physical archives of

print newspapers in Zimbabwe, which required burdensome international travel. P3

said that she rarely used newspapers in her own research, because many newspaper

archives are often inaccessible behind paywalls, and P4 emphasized the need for better

optical character recognition technology to improve search over printed newspapers.

P5 reported that he “used Zotero a lot” to store and organize archival sources; he

liked that Zotero is open-source and integrates with Microsoft Word.

7.7 Field study

In their review of design study methodology, Sedlmair et al. emphasize the im-

portance of deploying a designed solution “in the wild” to test if new software helps

“real users” solve “real problems” with “real data” [302]. Thus, we deployed Clio-

Query over the web in a field study for two historians, who used the tool to answer

questions from their own research. Unlike in the expert interview study, during the

field study, historians investigated questions over multiple meetings, and tried to reach

substantive rather than preliminary conclusions. We believe that this evaluation of-

178

fers more realistic but also less uniform feedback than the one-hour expert interviews

described in Section 7.5.

7.7.1 Procedure

We recruited two historians, H1 and H2 (Table 7.7) through convenience sam-

pling [124]. H1 and H2 did not participate in the initial design or development of

ClioQuery, to avoid what Sedlmair et al. [302] describe as a potential source of

bias. During the field study, one member of our research team conducted three one-

on-one meetings with each historian over Zoom video chat. The first meeting was

30 minutes long and the subsequent meetings were 60 to 70 minutes long, with 1 to

3 weeks between each meeting. Each meeting in the three meeting sequence had a

distinct focus. During the first meeting, the researcher presented a tutorial of the

software, described the field study process, and invited the historian to describe a

question related to their research. After the first meeting, a member of our research

team gathered the data needed to answer the historian’s research question and loaded

it into ClioQuery (the Appendix describes this data gathering). During the second

meeting, each historian learned to use the ClioQuery software, and performed a

preliminary exploration of the data. Then, during the final meeting, each historian

investigated some specific query by analyzing the comprehensive set of all mentions

using the Document Feed and Document Viewer. During each meeting, the researcher

observed each historian and invited the historian to think aloud [257] as they used

ID Research experience Library experience Academic role Gender Research area

H1 5 0 PhD student Male Media and society
H2 25 0 Tenured faculty Female Space exploration

Table 7.7: Historians in the field study. History and library experience are listed in
years.

179

the system. The researcher also asked the historian to describe their findings, and

explain how ClioQuery helped or did not help answer their research question.

7.7.2 ClioQuery helps experts investigate by skimming

During the field study, H1 and H2 each used ClioQuery to reach substantive

historical conclusions, offering additional evidence for our hypothesis (Section 7.4)

that ClioQuery can help experts answer research questions from news archives.

H1 used ClioQuery to verify a well-known claim from Herman and Chomsky,

who argue that for-profit news organizations in the United States shape public opinion

towards the interests of political and economic elites [155]. To offer evidence for this

theory, in their work, Herman and Chomsky assert that The New York Times wrote

five articles in February and March of 1984 describing the Salvadoran army as a

protector of El Salvador’s election. To verify this result, H1 searched a New York

Times corpus (see Appendix) for the query “election” and then used the filter-by-date

feature to select articles from February and March of 1984. H1 then used the filter-

by-subquery feature to identify those query results which contained the subquery

“army” and then systematically reviewed all 32 matching documents, through what

H1 described as “skimming highlighted parts” in the Document Viewer. By using

ClioQuery in this manner, H1 said that they were “able to find what might be the

five articles” Herman and Chomsky used to partially support their conclusions. H1

explained, “The tool is great for exactly this.”

H1 found ClioQuery’s in-text highlighting helpful for their research task, draw-

ing a comparison with a baseline keyword document search system (Section 7.2.2.1).

“I like how you have the bold highlighted and colored words in the text itself,” they

said. “That is the advantage that this interface has over the New York Times web-

site.” H1 also explained how such highlighting reduced reading burden, compared to

keyword document search, which allowed him to skim relevant documents. “What I

180

need to know is the army described as a protector of the election [in an article],” he

said. “I don’t need to read every word of the article to find that out. I can look at

the paragraphs where they are describing the army and I see what they are saying in

those paragraphs. That is pretty useful.”

H2 chose to use ClioQuery to study how the United States media represented

female astronauts Svetlana Savitskaya and Sally Ride in the early 1980s, to gather

evidence for an upcoming book about gender and space exploration. To investigate,

H2 used ClioQuery’s Document Feed and Document Viewer to review portrayal

of Sally Ride in The New York Times. H2 queried for the word “Ride” and then

scrolled through the Document Feed to skim over mentions of Ride in the 63 matching

documents, sometimes also clicking to open individual news stories in the Document

Viewer. “I have some hypotheses that I was able to develop very quickly through the

experience of using this [system],” H2 reported. “One is that Ride was presented to

the American public [in The New York Times] ... first as a woman and second as a

scientist”. H2 asked us to continue to provide access after the study, so she could

continue researching her book using the tool.

ClioQuery’s Document Feed was particularly helpful for H2, who found that

query-focused summarization offered an advantage over a baseline keyword document

search system. Ride was a PhD astrophysicist turned astronaut, and H2 wanted to

understand how the media portrayed her scientific credentials. The Document Feed

helped H2 quickly review this information. “[Here] she’s called a flight engineer,”

H2 said, pointing to the Document Feed. “I can see this already [without opening

the document].” H2 then scrolled through the Document Feed to find shortened

sentences where Sally Ride was described with her academic title (Dr. Ride), and

sentences where Ride was described (or not described) as a physicist. H2 explained

that she could identify this information “just doing the quick scan [in the Document

Feed]”. She went on to explain how she would normally research this question with

181

The New York Times archive by opening and reading individual news stories using

a web browser. “The question is,” she said, “what can I do here [with ClioQuery]

that I can’t do there [i.e. on The New York Times website]?” H2 continued, “It’s

exploring the left hand Document Feed here. This is awesome ... I am liking these

short contextual pieces [i.e. shortened sentences]”. We illustrate this comparison in

Figure 7.2; by using ClioQuery, H2 was able to easily gather and analyze mentions

of Ride across the corpus.

7.8 Discussion

7.8.1 New features and directions for text analysis

Much prior work in interactive text analysis focuses on helping users gain overviews

of corpora that are too large to read (Section 7.2). For instance, systems and frame-

works from the Visualization and HCI community such as TIARA [203], TextFlow

[79], Termite [63], Overview [43], ParallelTopics [92], RoseRiver [80], ConVisIT [162]

and Vis-Kt [260] from venues such as TiiS, IEEE TVCG, IEEE VAST and AVI fo-

cus on helping users explore overall themes in corpora by interacting with clusters of

words and documents.

But because historians often need to gather and analyze mentions of specific query

words in large archives, ClioQuery instead applies text summarization technologies

developed within NLP venues such as ACL and EMNLP to show skimmable sum-

maries of a query term across a corpus. The system then presents such summaries

using linked views and in-text highlighting, to help users easily review summary text

in underlying documents. During expert interview and field study evaluations, many

historians said that they found such features helpful for archival research. They re-

ported skimming over query mentions in the Document Feed to gain a sense of a

query’s use across a corpus, and then reading highlighted mentions in the Document

182

Viewer for more context and detail. Several specifically mentioned that these com-

ponents helped with mention gathering and analysis.

This query-oriented approach suggests new directions for interactive text ana-

lytics, where ideas and features from ClioQuery might be applied in new query-

oriented systems, or might be applied to extend existing overview-oriented tools. For

instance, users might formulate a query using overview-oriented features such as word

clusters, and then investigate this query using a ClioQuery-style summary and full-

text view.

Prior research in interactive text analytics suggests the need for such an approach.

For instance, reflecting on the development of Overview [320], author Jonathan Stray

notes that users often “knew what they were looking for in advance,” which stands

“in contrast to the large research literature concerned with ‘exploring’ a document

set”. Similarly, reflecting on the development of Jigsaw [126], Görg et al. describe the

importance of helping users review underlying documents. They write that “interac-

tive visualization...cannot replace the reading of reports”. Such conclusions from prior

work seem to reinforce our findings, suggesting a role for query-focused summarization

and linked full-text views in interactive text analysis.

7.8.2 User feedback on summarization has implications for NLP

ClioQuery applies particular ideas from query-focused summarization in NLP

for interactive text analysis. However, building and evaluating a user-facing summa-

rization system for historians forced us to reexamine several core assumptions from

the literature on text summarization. In particular, early versions of ClioQuery ap-

plied standard optimization-based summarization methods [229] to select “important”

information from a corpus, much like prior temporally-oriented language engineering

systems such as HistDiv [311], TimeMine [8] and TimeExplorer [225], which each

automatically identify relevant information, based on a query.

183

However, during needfinding and prototyping, we found that some historians and

archivists strongly disliked this approach. Experts reported that they needed to

understand why the computer was showing particular summaries, before they could

actually draw conclusions from the output (see Figure 7.4). Based on this feedback,

in later versions of ClioQuery, we stopped trying to extract “important” mentions

of a query term in search results. Instead, we decided to shorten and present every

single sentence mentioning a user’s query in the Document Feed (see Figure 7.4), and

allow users to easily examine such shortenings in context in the Document Viewer.

During our expert interview and field study and evaluations, we found that this

approach was more successful. We hypothesize that experts liked this format, because

they could understand why ClioQuery showed query shortenings, and thus use

ClioQuery output in their research.

Our experiences might have implications for NLP, where research in summariza-

tion typically focuses on generating summaries which best match “gold” references

[82, 248], without worrying about how to explain how summaries are formed. In

particular, much recent work on abstractive summarization in NLP [291, 156] seeks

to generate summary passages that do not occur in the input text. Because such

abstractive output can not be checked against underlying sources, and because such

methods also currently suffer from frequent factual errors [191], much more research

towards trustworthy abstraction may be required, before these approaches might be

applied towards social research.

7.8.3 Supporting comprehensive and unbiased analysis

During needfinding interviews, historians and archivists often emphasized the im-

portance of directly and comprehensively examining all evidence relevant to a given

research question, without allowing black-box algorithms to influence their conclu-

sions. We thus designed ClioQuery to help users keep track of which query men-

184

tions they have reviewed in a corpus, without potential bias from algorithmic ranking.

Yet feedback on these aspects of ClioQuery was mixed (Section 7.6.3 and 7.6.5).

While some appreciated how ClioQuery used filters instead of ranking to narrow

down search results, others reported that truly forgoing algorithmic curation required

the researcher to spend too much time reading irrelevant documents. For instance,

some users admitted that they often no have choice but to trust computer models

of relevance to find evidence in archives, because keyword search often turns up far

more documents than they can possibly review.

Why did some users express deep commitment to full manual review of evidence

during needfinding interviews, while other users admit that they had to trust search

engines to select evidence during system evaluation? There seem to be at least two

possibilities. One possibility is that historians and archivists might express commit-

ment to comprehensive review when describing their ideal practices, but remember

the limitations of this ideal when faced with a real task during system evaluation.

(Some approaches to needfinding in HCI emphasize the limits of user interviews [41]).

Another possibility is that there is simply some variation in our users’ commitment

to comprehensiveness. Some but not all historians may feel required to comprehen-

sively review all evidence during research, possibly based on intellectual background

or subfield.

Future researchers might resolve the contradiction between experts’ stated com-

mitments to comprehensive review and the realities of inevitable tradeoffs between

recall and time [277, Fig. 6] with improved user interfaces. Specifically, systems might

transparently show which documents are selected or hidden by an algorithm, and al-

low users to easily override and investigate any document ranking decisions from a

machine. Research on tools for visually and interactively refining search results [300]

might offer a useful starting point.

185

7.9 Limitations and future work

Because it was difficult and expensive to recruit and interview highly-trained ex-

perts, in this study we report results from in-depth meetings with a small sample of

humanists. While such one-on-one interviews provided rich feedback, the opinions of

our participants likely only approximate the true requirements of all historians and

archivists. In the future, we thus plan to take steps to facilitate adoption, in order to

learn more about user needs. In particular, we found that historians have to collect,

organize and sometimes digitize news stories, before they are ready to gather and

analyze query mentions (Section 7.6.6). We thus plan to add features for importing

news stories into ClioQuery from existing tools like Zotero and the Internet Archive.

Additionally, throughout this work, we assume that query mentions are defined by

exact string matches. This simplifying assumption allows us to focus on user experi-

ence and interaction, but has clear limitations. For instance, authors sometimes refer

to “Reagan” using the nickname “Dutch”. Automatically detecting such aliases (and

other deviations from exact string matching) will be important for future work.

7.10 Conclusion

In this study, we considered how to design an interactive text analytics system

to help historians in their practice of gathering and analyzing mentions of a free-text

query in a newspaper archive. To create the system, we first studied the needs of

historians and found that analyzing change across time, undertaking comprehensive

review of evidence, evaluating contextual information and conducting neutral obser-

vation are each central to the practice of historical research.

We then designed the ClioQuery system based on such findings. ClioQuery uses

methods from NLP to create a skimmable summary of the comprehensive set of all

mentions of a user’s query term in an archive. The system also uses linked views and

automatic in-text highlighting to show summary text within underlying source doc-

186

uments, to facilitate review of query mentions in context. Moreover, because change

across time is central to historical research, ClioQuery includes a navigable time se-

ries visualization to offer an overview of temporal trends in query frequency. Finally,

ClioQuery also tries to engender trust by avoiding potential sources of unwanted

algorithmic bias. For instance, the system offers filtering features to narrow results in

a neutral manner, instead of ranking results with black-box algorithms (which might

influence research).

We tested such features in two separate user studies with historians, where we

found that ClioQuery’s approach to organizing and presenting query mentions could

help users answer real questions from news archives. Many historians reported that

ClioQuery’s Document Feed facilitated rapid analysis of query mentions, and that

ClioQuery’s linked Document Viewer offered complementary context and detail.

Such findings suggest possible new features and directions for user-facing language

systems, particularly in query-oriented settings. Where much prior work in interactive

text analytics focuses on providing corpus overviews, ClioQuery instead focuses on

helping users gather and analyze query mentions, through skimmable query-oriented

summaries linked with a full-text view of underlying text. This same feature set

might be used to extend existing overview-oriented tools (e.g. Themail [335]), or

in new systems for query-oriented corpus analysis. For instance, some marketing

applications suggest notable keywords from user comments in online forums [125,

Section 4.1]. ClioQuery features might thus be applied to help marketers gather

and analyze mentions of such keywords, or to help other users investigate other queries

in other domains.

187

PART IV: CONCLUSION

CHAPTER 8

CONCLUSION, LIMITATIONS AND FUTURE WORK

Conclusion

This study defines and introduces lexical corpus analysis, in which people formu-

late and answer qualitative research questions by (1) reviewing a corpus vocabulary,

and (2) examining items from that vocabulary in context. For instance, traditional

concordances are one particular tool for lexical corpus analysis, because they present

a unigram vocabulary and help users review items from that vocabulary amid im-

mediately surrounding text. However, throughout this thesis, we argue that there

are many other possible approaches to lexical investigation (e.g. Figure 1.5). For

example, like a traditional concordance, a ConceptMap interface (Chapter 3) both

defines a corpus lexicon and presents items from that lexicon in context, in order to

help people make sense of text.

We propose that there are three fundamental research questions underlying such

lexically-oriented corpus investigation:

R1: How can lexical systems represent a corpus vocabulary to reflect human men-

tal and linguistic models of a domain?

R2: How might lexical systems show query terms in context, to best satisfy user

search need?

R3: How can we build new lexical systems for specific user groups?

We investigate these questions in Part I through Part III of this thesis, where we con-

sider and evaluate possible solutions in terms of metrics like computational efficiency,

189

usability and domain independence, which we argue are crucial to user-facing corpus

investigation (Section 1.5).

Together, our study defines and introduces lexical corpus analysis, provides a

collection of new NLP methods to facilitate lexical corpus analysis, and offers two

investigations into specific lexical systems created to assist particular user groups.

In computational evaluations, we demonstrate the ways in which our proposed NLP

methods offer advantages over baseline techniques (e.g. lower latency, Chapter 5);

and in human evaluations, we demonstrate the ways in which new lexical interfaces

offer both quantitatively measurable (e.g. faster task completion, Chapter 6) and

qualitative benefits (e.g. comprehensive presentation of evidence, Chapter 7).

Yet while we make measurable progress towards addressing R1, R2 and R3, our

work is plainly incomplete. In the next sections, we describe both the limits of our

efforts, and our planned steps towards addressing those limits in future research. We

then conclude by reviewing broad lessons from our experiences with user-facing NLP.

8.1 Future work towards representing the lexicon

In the first chapter of this work, we argue that gaps between machine represen-

tations of a corpus vocabulary and human mental models of a lexicon hinder the

effectiveness of tools for lexical corpus analysis. We then ask how systems might

represent a corpus lexicon to better reflect the ways that people think, talk and write

about the terms and concepts in a domain. In Part I, we offer a partial answer to this

question through the NPFST method, which efficiently extracts important multiword

phrases across heterogeneous corpora. Yet while NPFST offers improvements over a

bag of unigrams, our effort plainly falls short of our distant goal of machines which

can mirror human mental models of a corpus vocabulary.

One particular gap in our representation of a corpus lexicon stands out as most

in need of immediate future attention. Throughout this thesis, we typically assume

190

that each lexical item or concept in a corpus is defined by a particular string. We

then assume that only passages which contain the string mention the lexical item.

For instance, in Chapter 3, we assume that only those sentences which contain the

exact string “President Clinton” mention the once U.S. leader. While this simplifying

assumption offers advantages,1 we believe that systems which rely on exact string

matching will violate user expectations in two important ways, necessitating further

work.

First, exact string matching will introduce false positives, in which the user is

shown passages that do not actually mention their lexical query. Some false posi-

tives will arise from entities with the same name. For instance, the query “Jamaica”

may refer to the Caribbean nation “Jamaica” or the New York City neighborhood of

“Jamaica” Queens. Other false positives will arise from less concrete queries such as

“peace treaty,” which may refer either to the general idea of a peace treaty, or to a

specific peace treaty during a specific conflict. Such false positives may mislead the

user (e.g. a ClioQuery summary might describe events in the wrong “Jamaica”), or

require the user to take on the unnecessary burden of reviewing irrelevant evidence.

Exact string matching will also introduce false negatives, in which a system will

not show the user passages which do in fact mention their query. For instance, the

concept “Bill Clinton” may be referenced via the strings “President Clinton,” “U.S.

leader” or “White House” (as in “White House strategy”). But passages containing

such query mentions would not be identified with exact string matching techniques.

This limitation in recall is especially important in fields like history, which emphasize

comprehensive review of all available evidence (Chapter 7).

1Exact string matching allows us to focus on specific research objectives (e.g. designing a text
analytics system for historians, Chapter 7), ensures interpretable output (a person can understand
why a computer believes a given passage references a lexical item), and is clearly sufficient to help
some users in some circumstances (e.g. journalists, Chapter 7).

191

It it likely possible to apply existing work in NLP to partially address such short-

comings. Most obviously, future research might employ tools and methods for resolv-

ing coreference, which seek to identify token spans that refer to the same entity across

one or more documents. (Eisenstein [100] offers an introduction to this well-studied

area.) For example, coreference resolution methods might help detect that the spans

“President Aristide” and “Haitian leader” each refer to the once Haitian President (in

a particular news article), or help with the challenging task of distinguishing between

occurrences of identical strings that reference different entities (e.g. occurrences of

“John Smith”, which refer to different people [15, Sec. 6]).

Other closely-related work may also help address false negatives. For instance,

work on entity linking [305] tries to identify spans of text which mention known

named entities listed in a knowledge base (KB). Future lexical systems might build

on or apply this work to help identify mentions of some free-text queries.2 For exam-

ple, if a user queries for “Clinton,” a lexical system might use entity linking techniques

to identify spans which refer to the “U.S. leader”. Work concerned with cataloging

[238] and detecting [149, 288] lexical relations like hypernyms, or identifying word

senses [246] might also be applied in similar circumstances. A user searching for

mentions of the word “general” might wish to see passages which include the hyper-

nym “commander”; and a user reviewing mentions of “Obama” might be interested in

passages containing certain senses of the phrase “White House” (e.g. a “White House

strategy”).

Yet while prior study offers tools, methods and ways of thinking which could ex-

tend our work, we expect that applying this existing knowledge towards user-facing

lexical systems will present new research challenges, related to broad and unsolved

questions in NLP. For instance, many current methods for coreference resolution

2Other lexical queries (e.g. “peace treaty”) will be insufficiently concrete to be listed in a KB.

192

rely on domain-specific supervision. Applying such supervised techniques in general-

purpose corpus analysis tools (e.g. for eighteenth-century court records, Chapter 2),

would present a challenging domain adaptation problem. Similarly, much work on

entity linking assumes access to a complete KB. But knowledge bases will not cover

all areas that a user wishes to explore; in our work on Rookie (Chapter 6), we

found that Wikipedia did not contain entries for many prominent politicians in a lo-

cal news corpus. Therefore, we expect that applying entity linking methods towards

lexical corpus analysis would require adapting research focused on creating knowledge

bases, possibly using distantly supervised [239] or cold start [20, Sec. 6.5] techniques,

intended for settings with limited supervision. Finally, from an HCI perspective, ap-

plying any predictive method in a user-facing system will open questions surrounding

how to set and meet user expectations for an intelligent interface. How to best design

intelligent user-facing systems is a subject of ongoing research [10].

8.2 Future work towards showing lexical items in context

In Part II, we consider how to show lexical items in context in order to satisfy

user search need. While our work offers measurable advantages over baselines (e.g.

higher yield or lower latency, Chapters 3 and 5), our limited efforts still have clear

shortcomings which might be addressed in future research.

Reconsidering extractive and single-sentence summarization

Most immediately, much of our work in Part II focuses on single-sentence, ex-

tractive summarization; we try to create query-focused summaries by selecting and

shortening individual sentences (e.g. Chapter 7). This single-sentence and extractive

orientation allows us to simplify and thus make progress on new tools for lexical cor-

pus analysis. But the approach has limitations. In some cases, salient information

may be scattered or repeated across multiple sentences from one or more documents,

193

or expressed with unnecessary verbosity. Therefore, in the future, we might inves-

tigate sentence fusion methods [27] which seek to synthesize salient phrases from

across multiple sentences to create a new single summary sentence. We might also

investigate similarly abstractive techniques for paraphrasing [118] wordy portions of

source documents, to help make better use of a summary budget. However, because

these approaches risk confusing or misleading the user (see Section 1.5 and Chapter

7), future research might focus on developing accurate, trustworthy and interpretable

abstractive techniques.

Developing corpus resources

Our work in Part II is also hindered by a lack of corpus resources, which are of-

ten central to advances in NLP. Ideally, we would like to have a large, multi-domain

dataset of queries, documents and reference summaries, constructed to reflect a user’s

information need.3 Yet historically, NLP has created few annotated resources for

query-focused, multi-document summarization [268], perhaps because constructing

such corpora can be expensive and difficult. (We describe our own experiences in

Chapter 3). Given such challenges, future research might focus on creative and au-

tomatic methods for constructing evaluation corpora, much like recent work towards

creating resources for traditional, single-document summarization [132, 156]. Alter-

nately, future work might focus on adapting existing datasets for our lexically-oriented

setting (as in Chapter 5). Regardless of how we construct corpus resources, we expect

that evaluating machine-generated text against any sort of reference summary will

require attention and effort; there is much active research into automatic metrics for

text generation tasks [52], such as summarization.

3Kryscinski et al. [191, Sec. 3] suggest expressing the user’s need as a question. They also point
out the importance of minimizing noise in creating corpus resources for summarization.

194

Moving past a binary definition of salience

Throughout our work, we imagine that the user wishes to review mentions of

Q in context. Therefore, we assume that including Q in summary output is sufficient

for presenting the most salient information in passages or documents. In Chapter 4,

which focuses on single-sentence summarization, we say that this assumption imposes

a binary definition of salience (also called “importance”).

This binary definition has obvious shortcomings. For instance, a user reviewing

mentions of Q =“Aristide” might also wish to see information about related concepts,

such as General Raoul Cedras. (Cedras lead a coup against Aristide in 1991, see

Chapter 6). In theory, work from query-focused or multi-document summarization

[82] might help identify such query-related related concepts using patterns in word

frequencies [249, 83, 135]. Therefore, in the future, equipped with corpus resources,

we might experiment with applying such methods in our lexical setting, in order to

expand our binary definition of salience.

Using language models to reduce reliance on supervision

In this work, we use natural supervision and human annotation to try and iden-

tify well-formed summary output (e.g. Chapter 3 or Chapter 4). This reliance on

supervision makes it harder for future researchers to build on our work. For instance,

our supervised method for creating ConceptMaps (Chapter 3) likely could not be

used to build different kinds of lexical interfaces. Moreover, our annotated dataset

from Chapter 4 likely does not cover many aspects of how people perceive shortened

English sentences, and could not be applied to shorten sentences in other languages.4

4We do try our best to mitigate the risk of overfitting to supervision. In Chapter 3, we test our
approach on multiple kinds of text, to try and reduce the risk that our headline-supervised method
only works on news stories. Similarly, in Chapter 4, our work is motivated by a belief that modeling
human cognitive processes can be used to create NLP methods which are less tied to training data.

195

Given these limitations, we believe that future research should explore language

modeling to predict well-formedness. A language model (LM) assigns a probability

to a sequence of tokens [100, Chp. 6]. Prior study from Lau et al. [195] suggests that

LM predictions correlate with human sentence-level judgments of well-formedness.

Therefore, in the future, LMs might be used to identify well-formed summaries, much

like how work in MT (e.g. Koehn et al. [190]) uses language models to identify more

and less fluid translations.5 The chief advantage of this approach is that LMs learn

parameters from unlabeled text, and thus do not require specialized supervision;

LM-based approaches could be trained on any corpus that a user wishes to explore.

Future LM-based techniques might also leverage a large body of engineering-oriented

(e.g. KenLM [148] or RoBERTa [204]) and experimental work [59, 177] on language

modeling, in service of specialized user-facing systems.

Nevertheless, exploring LM-based approaches to predicting well-formedness would

present research challenges. To begin, language models may have many parameters,

which will have to be stored and updated using compute resources. Moreover, cur-

rent state-of-the-art neural language models such as BERT [87] require access to a

specialized GPU. Future research might consider how to best use such large lan-

guage models in computationally-limited settings (e.g. a laptop with a single CPU).

KenLM’s efficient implementation of a traditional N -gram language model [148], and

current study focusing on reducing the size of large pretrained language models such

as BERT [287, Section 6.2] may suggest possible paths forward.

Yet applying LMs to predict well-formedness also presents algorithmic challenges.

If every word within K tokens of an occurrence of Q may appear in a summary, then

there are 22K possible ways to represent a single occurrence ofQ in context. (Any word

within the 2K window may be included or not-included in the output.) Searching this

5Using LMs for summarization is not new. For instance, Clarke and Lapata [67] use language
models for sentence compression.

196

large space to find the most well-formed extractions (according to a LM) presents a

research challenge. Approaches to decoding from machine translation [250] and work

on applying optimization techniques towards text summarization [224, 202] may offer

useful starting points.

Finally, note that while we expect that LMs will prove useful for predicting well-

formedness, linguists and cognitive scientists do disagree about the extent to which

probabilistic methods can explain or predict human linguistic behavior. Both Chater

and Manning [56] and Lau et al. [195] each describe these debates. Within NLP, recent

successes of language modeling for downstream tasks have inspired a corresponding

literature focused on identifying shortcuts or heuristics underlying apparent linguistic

reasoning. Rogers et al. [287] offer a partial review of this work, focusing on BERT.

Ultimately, limits of language modeling in representing human linguistic behavior

could imply corresponding limits in the use of language models to predict summary

well-formedness.

Considering multi-sentence properties of output summaries

Finally, future work might consider other multi-sentence properties of output sum-

maries. For instance, systems might take care to include important background in-

formation from one sentence in order to frame foreground events in another sentence;

such as mentioning the fact that “Cedras took power” before mentioning that “Aristide

fled” (Chapter 6). NLP offers a number of different ways to represent such discourse

phenomena [100, Chp. 16], which might be explored in future work. Formalizing and

accounting for such discourse structures would likely prove challenging, but offers the

potential to improve summary output.

Attention to complex semantic relationships between sentences, such as the re-

lationships described in MacCartney and Manning [210], might also be helpful for

showing query mentions in context. For instance, in Chapter 3, we discuss how a

197

summary which asserts that a couple has divorced should not waste budget inform-

ing readers that the couple once married. In this case, determining that one textual

unit entails another (i.e. if one unit is true, the other must be true [210]) allows

some sentences to be omitted from a summary. Similarly, if a summary presents an

apparent contradiction (e.g. asserting that both Aristide and Cedras hold power in

Haiti), it may have to also include other supporting information to resolve and explain

the inconsistency. Thus, research on identifying and representing complex semantic

relations between sentences should be explored in future research.

8.3 Future work towards user-facing lexical systems

8.3.1 Needfinding from text at scale

In Part III of this work, we argue for the importance of researching the needs of

individual user groups to design new systems for lexical corpus analysis. We then

demonstrate the importance of such user research in Chapter 7, by conducting and

analyzing user interviews for our ClioQuery software. In our work on ClioQuery,

interviews helped us correct a (deeply flawed) initial system design, provided nuanced

insights into how historians search, and revealed limitations of current summarization

methods in NLP. Yet while one-on-one interviews proved valuable, we still observed

well-known limitations in this traditional HCI research technique:

• Because we had to schedule, conduct and code each meeting with an individual

participant, collecting qualitative user data for ClioQuery was time-intensive.

Developers of future lexical systems who meet with users would incur similar

time costs.

• Because we could only conduct a small number of interviews, we ran the risk of

drawing conclusions from what Shneiderman [309] describes as a “small samples

of users who offer biased perceptions or reports.” While speaking with a few

198

participants selected via non-probabilistic sampling provided rich and open-

ended feedback, findings from our ClioQuery user studies may not generalize

beyond our small sample.

• Because our meetings were only one hour long, we could only discuss limited

topics during limited time with experts. Manual data gathering thus imposed

limits in the coverage of our data.

• Perhaps because interviews relied on self-reported descriptions of historical re-

search practices, we observed some puzzling inconsistencies in expert feedback.

Some participants told us that social researchers should never draw conclusions

based on curated evidence from opaque software. But others admitted that

in practice they do trust ranking results from black-box search engines. This

inconsistency might reflect a known limitation of interview-based methods. As

Blomberg and Burrell [41] note, “what people say they do and what they actu-

ally do are frequently quite different.”

Noting such strengths and limitations, we propose that interviews offer just one par-

ticular way of “studying people to identify their unmet needs [269],” a process known

in the HCI literature as needfinding.6 We then propose a broader study of NLP-based

needfinding in future work.

Our planned research begins from the observation that people use text to express

their frustrations, desires, goals, practices and reasoning across heterogeneous digital

platforms such as social networks, collaborative workspaces and free-text surveys.

In the future, HCI researchers, software organizations and technology entrepreneurs

might use insights gleaned from analyzing this text data with NLP methods to enrich

understanding of users at scale.

6Stanford engineer Robert McKim is said to have first coined this term in the 1970s [269].

199

NLP offers many possible advantages for needfinding:

• NLP methods might draw insights from large datasets, to achieve broad cov-

erage. For instance, NLP approaches might help identify rare user experiences

or long-tail use cases, which might not be detected in small ethnographic or in-

terview studies, due to limited manual data gathering. Prior work has already

started to explore this idea. For instance, Schaffhausen [293] offers a disserta-

tion focused on analyzing large numbers of need statements. Similarly, Griffin

and Hauser [131] try to estimate gaps in coverage by modeling the probability

that a given customer voices a given need during an interview.

• NLP offers the possibility of quantitative measurement of user requirements.

For example, NLP might might help researchers reason more accurately about

the incidence of particular use cases, which could help prioritize the application

of limited design or engineering resources. Estimating the incidence of user

requirements from small, traditional interview datasets would likely be very

noisy.

• NLP methods might lower the costs of interview-based needfinding research.

For instance, one frequently-cited study from Griffin and Hauser [131] found

that 20 to 30 one-hour interviews coded by four to six analysts were needed to

identify 90 to 95 percent of customer needs (for a given product). The authors

also estimate the financial costs of an interview at around $1000 to $2000 (at a

U.S. company, in 1993). Reducing the costs of needfinding could enable faster

iteration and time to market.

• Finally, NLP methods scale to large datasets. Therefore, like traditional survey

research, NLP might mitigate some threats to validity from a small sample size.

Yet while computational methods for analyzing text data offer exciting possibili-

ties, in many ways applying NLP methods to perform needfinding extends existing re-

200

search traditions in HCI.7 For instance, motivated by inevitable gaps between human

words and actions, some HCI researchers already turn to ethnographic needfinding

techniques to gain insights about users, via digital and non-digital observational data

like field notes, video recordings, social network structures, blogs, sensors, social me-

dia posts and computer logs [41, 244, 263]. NLP methods for analyzing user-generated

text can be thought of as a way of supporting these existing needfinding practices at

scale.8 Similarly, NLP can be thought of as a particular tool for mixed methods HCI

research [334], which seeks to combine the strengths of qualitative and quantitative

inquiry [76].

Of course, like any research technique, NLP needfinding methods would also have

downsides and limitations. First, users who comment about needs and practices on

any particular channel (e.g. on Reddit.com), may not represent the broader user pop-

ulation. Thus, like traditional interview research, NLP-based needfinding may suffer

from threats to validity from sample bias. Second, while it might be possible to

design around limitations of predictive text processing [10], HCI practitioners may

still be skeptical of NLP methods, which might limit adoption. Limited evidence

already suggests that some practitioners may not trust qualitative conclusions from

automated systems [174], and may dislike the idea of replacing a traditional codebook

with a machine-generated schema [218]. Third, NLP methods may also miss extra-

linguistic information such as gesture or tone of voice available in interviews, which

may be important for understanding some user perspectives. Moreover, unlike tradi-

tional interview respondents, users who contribute to large corpora (e.g. by posting

on Reddit) likely could not provide consent to participate in a needfinding study.

7Thanks to Jed Brubaker and Morgan Klaus Scheuerman for helpful pointers in this area.

8During our own work on ClioQuery, we gathered helpful observational data by reading through
descriptions of search behavior from social science papers discovered via the JSTOR search engine,
a language technology. We consider this to be a form of NLP-based observational needfinding.

201

Finally, and perhaps most importantly, traditional ethnography has a well-established

code of ethics and well-developed theory on the epistemic limits of direct observation,

particularly across cultures (see Blomberg and Burrell [41]). In much the same way

that traditional ethnographers outside HCI sometimes grossly misunderstand their

subjects, it seems likely that computational tools for large-scale analysis of digital

text will sometimes grossly misrepresent user needs and practices. For instance, NLP

tools might only infer user needs expressed in dominant dialects [39], and thus unex-

pectedly ignore feedback from marginalized user groups. Thus while NLP methods do

have much to offer, responsible technical development will also require corresponding

theory describing the proper interpretation and use of new sources of information,

much like the existing body of research surrounding established interview, survey or

observational techniques [86].

Yes NoIn this a feature request? 189 posts labeled so far

Figure 8.1: A user labels social media posts describing feature requests.

8.3.2 A hypothetical case study in needfinding from text

One possible NLP-based approach to needfinding might focus on tools for human-

in-the-loop sensemaking and corpus analysis, much like efforts described throughout

this work. For instance, imagine an entrepreneurial software developer looking to cre-

ate a new note-taking app for tablets. The developer might start off with a suspicion

that there are gaps in the market for note-taking software, but might not understand

202

the exact limitations of existing solutions. To investigate, the developer might begin

by performing supervised document-level classification to find a set of posts which de-

scribe feature requests (Figure 8.1) on subreddits devoted to existing note taking tools

(such as the subreddits r/Notability, r/OneNote and r/Evernote on Reddit.com).

Corpus

r/Evernote

r/Goodnotes

r/Notability

r/OneNote

Document Class

Feature request

Top Terms Snippets

I am migrating to Notability from Goodnotes and Noteshelf (I
need the voice recording feature). I have my own template
that I want to use a default ... I searched online on how to
import templates and the official answer is that I have to copy
paste the template into every single new page? ... is there
really no Cornell type default template with dotted lines built
in?? This is essential for me.

How can I make my own template default?

Cornell notes

Cornell Notes Template integration

Other post

Cornell

Apple pencil

vendor lock-in

math equations

export markdown

(showing 34 posts)

Use case

Figure 8.2: A user employs NLP methods to identify design gaps in current note
taking applications. After training a supervised (Figure 8.1) 2-way classifier, the user
clicks to select documents included in a (predicted) class called “Feature request”(s).
On click, the application automatically populates a Top Terms list. The user se-
lects the top term “Cornell,” and the snippets populate (right) to show mentions of
“Cornell” in context.

After identifying a set of posts which describe feature requests using a supervised

classifier, the developer might investigate this new dataset using a lexically-oriented

interface much like Rookie. For example, the imagined interface in Figure 8.2 ranks

the corpus or subcorpus vocabulary according to a word importance score to create a

list of top terms (e.g. top terms by word count, from posts describing feature requests).

After observing top terms, the developer might discover that feature requests for

note taking apps often contain the unigram “Cornell”. The user might then click

to read snippets from posts that mention “Cornell,” and learn that some people use

the “Cornell” method to take notes [270, Chp. 10]. They might also learn that

some existing note taking apps have poor support for the Cornell method. Equipped

with preliminary evidence of a design gap, the developer might then proceed with

more traditional user testing, prototyping and market research for an app devoted

to Cornell-style note taking. This example shows one way in which NLP might be

applied to support needfinding in HCI.

203

8.4 Final remarks: conclusions from user-facing NLP

This thesis adopts a user-centered view of natural language processing. We develop

NLP methods and NLP systems designed for specific user groups, while soliciting user

feedback to guide our work. This user-centered vantage point is somewhat unusual in

the field. Much work in NLP focuses on developing or investigating language technolo-

gies using automatic metrics, while often overlooking how people might actually apply

conclusions from NLP research in user-facing settings. While abstracting away from

users is sometimes appropriate,9 our work suggests that the practice of methodically

investigating the needs of specific classes of users, and the practice of methodically

testing applications built for particular use cases, has much to offer NLP. We detail

broad lessons from our work below.

User interfaces shape, constrain and reveal NLP problems

People interact with language technologies via specific user interfaces, which in

turn are employed in specific contexts. Throughout our study, we have often found

that the details of how such interfaces actually work, and the details of what people

actually expect them to do, often shape and constrain natural language processing

problems. For instance in Chapter 3, we consider ConceptMap interfaces, which

have a particular visual format. Because ConceptMaps require descriptions of

relationships for display on a directed graph, our work on ConceptMaps lead us to

investigate (and make progress towards) NLP methods for summarizing relationships.

In this case, the visual format of the ConceptMap interface helped define and

9There are many good reasons to sometimes ignore users in NLP research. Most importantly, au-
tomatic evaluation (e.g. F1 scores, Chapter 5) or simplified human evaluation (e.g. Likert judgements,
Chapter 3) may help improve language technologies, which might later be deployed in user-facing
systems. In such cases, slow and expensive holistic evaluation (e.g. evaluating a finished application
with a user study) may by unnecessary. See Eisenstein’s related discussion of intrinsic and extrinsic
evaluation [100, Sec. 6.4 and 14.6].

204

shape a natural language processing problem; the interface was not a mere vehicle for

applying existing NLP techniques.

Working with users can help refine brittle NLP tasks

Based on our experiences, we believe that studying user-facing systems often re-

veals new NLP problems, because NLP tasks10 often encode assumptions which are

poorly matched to particular user-facing settings. For example, while working on

Rookie (Chapter 6), we found that summary quality was far less important than

system speed. Rookie is effective in part because it can quickly update summaries in

response to mouse gestures. Yet work on the traditional summarization task typically

ignores system latency, and instead evaluates with the recall-based ROUGE metric

against “gold” references [82]. Therefore, progress on summarization (as measured by

ROUGE), might not help Rookie users in their work answering questions from news

archives.

Our experiences with Rookie were consistent with other findings from our work.

In Chapter 5, we found that standard approaches to the sentence compression task

could not be applied in interfaces which accept user queries, and are poorly suited

to settings (e.g. journalism) where practitioners do not have access to specialized

hardware like GPUs. Likewise, in our work on ConceptMaps, we found that existing

research on the relation extraction task was poorly suited to helping people investigate

connections between concepts in a corpus. These experiences suggest that testing

language technologies with actual users can refine and sharpen NLP research, by

revealing hidden assumptions in brittle NLP tasks.

10We say that a task is defined by a set of corpora, a set of shared human or automatic evaluation
metrics, and a set of assumptions about possible solutions. For instance, the extractive sentence
compression task (Chapter 5) is devoted to shortening sentences by removing words, using statistical
and neural NLP techniques. NLP researchers who study extractive compression have agreed to
measure possible approaches using token-level F1 scores, as well as human readability and importance
judgments. They train and evaluate their work using a benchmark corpus [107].

205

Ignoring users risks developing language technologies no one wants

Finally, in much the same way that developers should undertake user testing to

mitigate the risk of building software no one wants [112], we propose that NLP re-

searchers should investigate user needs to reduce the risk of developing NLP methods

that no one will use.11 This is most clear to us from our work on ClioQuery (Chap-

ter 7), where testing summarization methods with historians revealed problematic

assumptions underlying extensive research on summarization techniques (see Section

7.8). Understanding and investigating what at least some group of people want from

a particular language technology might help mitigate the risk of conducting time-

consuming research based on unreasonable assumptions that will hinder adoption.

Final remarks

This chapter details future work towards lexical corpus analysis, and sketches

broader lessons from our study of user-facing natural language processing. In total,

we hope that our current and planned work can serve as a case study in user-facing

NLP, and enable powerful new tools for user-facing corpus analysis.

11However, in some cases, researching user needs may not be necessary. For example, it seems
very likely that some users would want real-time machine translation, with the fluency of faithfulness
of expert human translators. It seems safe to strive for such technology, without first conducting a
needfinding study.

206

BIBLIOGRAPHY

[1] Content explorer: Discover and analyze top-performing content in your
niche. https://web.archive.org/web/20210104144506/https://ahrefs.
com/content-explorer. Accessed: 2020-01-10.

[2] Wordseer 3.0 in detail. https://web.archive.org/web/20200812143155/
https://wordseer.berkeley.edu/wordseer-3-0/. Accessed: 2020-11-24.

[3] S. Abney. Part-of-Speech Tagging and Partial Parsing, pages 118–136. Springer
Netherlands, Dordrecht, 1997.

[4] Jacqueline Aguilar, Charley Beller, Paul McNamee, Benjamin Van Durme,
Stephanie Strassel, Zhiyi Song, and Joe Ellis. A comparison of the events and
relations across ACE, ERE, TAC-KBP, and FrameNet Annotation Standards.
In Proceedings of the Second Workshop on EVENTS: Definition, Detection,
Coreference, and Representation, 2014.

[5] Enrique Alfonseca, Daniele Pighin, and Guillermo Garrido. Heady: News head-
line abstraction through event pattern clustering. In ACL, 2013.

[6] James Allan, Jaime Carbonell, George Doddington, Jonathan Yamron, and
Yiming Yang. Topic detection and tracking pilot study: Final report. In Pro-
ceedings of the Broadcast News Understanding and Transcription Workshop,
1998.

[7] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar
Mohri. OpenFST: A general and efficient weighted finite-state transducer li-
brary. In Implementation and Application of Automata, pages 11–23. Springer,
2007.

[8] Robert B. Allen and Robert Sieczkiewicz. How historians use historical news-
papers. In Proc. ASIS & T. American Society for Information Science, 2010.

[9] Miguel Almeida and Andre Martins. Fast and robust compressive summariza-
tion with dual decomposition and multi-task learning. In ACL, 2013.

[10] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. Guidelines for Human-AI
Interaction. In CHI, 2019.

207

https://web.archive.org/web/20210104144506/https://ahrefs.com/content-explorer
https://web.archive.org/web/20210104144506/https://ahrefs.com/content-explorer
https://web.archive.org/web/20200812143155/https://wordseer.berkeley.edu/wordseer-3-0/
https://web.archive.org/web/20200812143155/https://wordseer.berkeley.edu/wordseer-3-0/

[11] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,
Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized
transition-based neural networks. In ACL, 2016.

[12] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning.
Leveraging linguistic structure for open domain information extraction. In ACL,
2015.

[13] Arthur Asuncion, Max Welling, Padhraic Smyth, and Yee Whye Teh. On
smoothing and inference for topic models. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, 2009.

[14] Markus Bader and Jana Häussler. Toward a model of grammaticality judg-
ments. Journal of Linguistics, 46(2):273–330, 2010.

[15] Amit Bagga and Breck Baldwin. Entity-based cross-document coreferencing
using the vector space model. In ACL, 1998.

[16] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet
project. In ACL, 1998.

[17] Paul Baker. Using corpora in discourse analysis. Continuum, New York, 2006.

[18] Timothy Baldwin and Su Nam Kim. Multiword expressions. In Handbook of
Natural Language Processing, 2010.

[19] Timothy Baldwin, Marie Catherine de Marneffe, Bo Han, Young-Bum Kim,
Alan Ritter, and Wei Xu. Shared tasks of the 2015 workshop on noisy user-
generated text: Twitter lexical normalization and named entity recognition. In
Proceedings of the Workshop on Noisy User-generated Text, 2015.

[20] Krisztian Balog. Entity-oriented search. Springer, Cham,Switzerland, 2018.

[21] Joshua Bambrick, Minjie Xu, Andy Almonte, Igor Malioutov, Guim Perar-
nau, Vittorio Selo, and Iat Chong Chan. NSTM: Real-time query-driven news
overview composition at Bloomberg. In ACL: System Demonstrations, 2020.

[22] David Bamman. Natural language processing for the long tail. Digital Human-
ities, 2017.

[23] David Bamman and Noah A. Smith. Unsupervised discovery of biographical
structure from text. TACL, 2014.

[24] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,
Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. Abstract Meaning Representation for sembanking. In Proceedings
of the 7th Linguistic Annotation Workshop and Interoperability with Discourse,
2013.

208

[25] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew J Broad-
head, and Oren Etzioni. Open information extraction from the web. In IJCAI,
2007.

[26] Cory Barr, Rosie Jones, and Moira Regelson. The linguistic structure of english
web-search queries. In EMNLP, 2008.

[27] Regina Barzilay and Kathleen R. McKeown. Sentence fusion for multidocument
news summarization. Computational Linguistics, 31(3), 2005.

[28] Eric P. S. Baumer, David Mimno, Shion Guha, Emily Quan, and Geri K. Gay.
Comparing grounded theory and topic modeling: Extreme divergence or un-
likely convergence? Journal of the Association for Information Science and
Technology, 68(6):1397–1410, 2017.

[29] Kenneth R. Beesley and Lauri Karttunen. Finite-state morphology: Xerox tools
and techniques. CSLI,Stanford, 2003.

[30] Nicolas Garcia Belmonte. Extracting and visualizing insights from real-time
conversations around public presentations. In IEEE VAST, 2014.

[31] Ram Ben-Shalom. Me’ir nativ: The first hebrew concordance of the bible and
Jewish bible study in the fifteenth century,in the context of Jewish-Christian
polemics. Aleph, 11(2):289–364, 2011.

[32] Emily M. Bender. Linguistic Fundamentals for Natural Language Processing:
100 Essentials from Morphology and Syntax. Synthesis Lectures on Human
Language Technologies, 6(3), 2013. Publisher: Morgan & Claypool Publishers.

[33] Kenneth Benoit and Paul Nulty. More than unigrams can say: Detecting mean-
ingful multi-word expressions in political text. MPSA Working Paper, 2015.

[34] Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. An empirical investi-
gation of statistical significance in NLP. In EMNLP, 2012.

[35] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. JMLR, 13:281–305, 2012.

[36] Adrian Bingham. The digitization of newspaper archives: Opportunities and
challenges for historians. Twentieth Century British History, 21(2):225 – 231,
2010.

[37] William R. Black. How watermelons became black: Emancipation and the
origins of a racist trope. Journal of the Civil War Era, 8(1):64–86, 2018.

[38] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet alloca-
tion. JMLR, 2003.

209

[39] Su Lin Blodgett and Brendan T. O’Connor. Racial disparity in natural language
processing: A case study of social media african-american english. ArXiv, 2017.
URL https://arxiv.org/abs/1707.00061.

[40] Su Lin Blodgett, Lisa Green, and Brendan T. O’Connor. Demographic dialectal
variation in social media: A case study of african-american english. In EMNLP,
2016.

[41] Jeanette Blomberg and Mark Burrell. An ethnographic approach to design.
In Julie A. Jacko, editor, The Human–Computer Interaction Handbook. CRC
Press, New York, 2012.

[42] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. A large annotated corpus for learning natural language inference. In
EMNLP, 2015.

[43] M. Brehmer, S. Ingram, J. Stray, and T. Munzner. Overview: The design, adop-
tion, and analysis of a visual document mining tool for investigative journalists.
IEEE TVCG, 20(12), 2014.

[44] David J. Brenes, Daniel Gayo-Avello, and Kilian Pérez-González. Survey and
evaluation of query intent detection methods. In Proceedings of the 2009 Work-
shop on Web Search Click Data, 2009.

[45] David R. Brillinger. Exploratory data analysis. In Bertrand Badie, Dirk Berg-
Schlosser, and Leonardo Morlino, editors, International Encyclopedia of Politi-
cal Science. SAGE, Thousand Oaks, April 2021.

[46] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. In WWW, 1998.

[47] Ted Briscoe, John Carroll, and Rebecca Watson. The second release of the
RASP system. In Proceedings of the COLING/ACL 2006 Interactive Presenta-
tion Sessions, 2006.

[48] Erika Bsumek, Matthew O’Hair, Ian Diaz, and Braeden Kennedy. Cliovis, Ac-
cessed Dec 24, 2020. URL https://web.archive.org/web/20201224213752/
https://cliovis.org/.

[49] Andreas Buja, John Alan McDonald, John Michalak, and Werner Stuetzle.
Interactive data visualization using focusing and linking. In Proceedings of the
2nd conference on Visualization. IEEE, 1991.

[50] Carrie J. Cai, Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel
Smilkov, Martin Wattenberg, Fernanda Viegas, Greg S. Corrado, Martin C.
Stumpe, and Michael Terry. Human-centered tools for coping with imperfect
algorithms during medical decision-making. In CHI, 2019.

210

https://arxiv.org/abs/1707.00061
https://web.archive.org/web/20201224213752/https://cliovis.org/
https://web.archive.org/web/20201224213752/https://cliovis.org/

[51] Donald Owen Case. The collection and use of information by some american
historians: A study of motives and methods. The Library Quarterly, 61(1):
61–82, 1991.

[52] Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text gener-
ation: A survey. arXiv, 2020. URL https://arxiv.org/abs/2006.14799.

[53] Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative
event chains. In ACL, 2008.

[54] Allison Chaney, Hanna Wallach, Matthew Connelly, and David Blei. Detecting
and characterizing events. In EMNLP, 2016.

[55] Alexandra Chassanoff. Historians and the use of primary source materials in
the digital age. The American Archivist, 76(2):458–480, 2013.

[56] Nick Chater and Christopher D. Manning. Probabilistic models of language
processing and acquisition. Trends in Cognitive Sciences, 10(7):335–344, 2006.
Special issue: Probabilistic models of cognition.

[57] Danqi Chen and Christopher Manning. A fast and accurate dependency parser
using neural networks. In EMNLP, October 2014.

[58] Danqi Chen, Jason Bolton, and Christopher D. Manning. A thorough exami-
nation of the CNN/Daily mail reading comprehension task. In ACL, 2016.

[59] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. In ACL, 1996.

[60] Daniel Chomsky and Scott Barclay. The mass media, public opinion, and lesbian
and gay rights. Annual Review of Law and Social Science, 6(1):387–403, 2010.

[61] Noam Chomsky. Aspects of the theory of syntax. M.I.T. Press, Cambridge,
1965.

[62] Jason Chuang, Christopher D. Manning, and Jeffrey Heer. "Without the clutter
of unimportant words": Descriptive keyphrases for text visualization. ACM
Trans. on Computer-Human Interaction, 19, 2012.

[63] Jason Chuang, Christopher D. Manning, and Jeffrey Heer. Termite: Visualiza-
tion techniques for assessing textual topic models. In AVI, 2012.

[64] Jason Chuang, Daniel Ramage, Christopher D. Manning, and Jeffrey Heer. In-
terpretation and trust: Designing model-driven visualizations for text analysis.
In CHI, 2012.

[65] Jason Chuang, Sonal Gupta, Christopher D. Manning, and Jeffrey Heer. Topic
model diagnostics: Assessing domain relevance via topical alignment. In ICML,
2013.

211

https://arxiv.org/abs/2006.14799

[66] Charles L. A. Clarke, Eugene Agichtein, Susan Dumais, and Ryen W. White.
The influence of caption features on clickthrough patterns in web search. In
SIGIR, 2007.

[67] James Clarke and Mirella Lapata. Global inference for sentence compression:
An integer linear programming approach. Journal of Artificial Intelligence Re-
search, 31:399–429, 2008.

[68] Trevor Cohn and Mirella Lapata. Sentence compression beyond word deletion.
In COLING, 2008.

[69] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine
Bordes. Supervised learning of universal sentence representations from natural
language inference data. In EMNLP, 2017.

[70] Chrome Contributors. Search the web on chrome, 2021. URL
https://web.archive.org/web/20201105231921/https://support.
google.com/chrome/answer/95440.

[71] Internet Archive Contributors. Internet archive, 200x. Accessed Dec 8, 2020.

[72] "Lexis+ Contributors". Lexis+, 201x. URL https://www.lexisnexis.com/
en-us/products/lexis-plus.page. Accessed Dec 16,2020.

[73] Lucene contributors. Apache lucenetm 7.4.0 documentation, 2020. URL https:
//lucene.apache.org/core/7_4_0/index.html. Accessed Jun 15, 2020.

[74] Omeka Contributors. Omeka, 200x. Accessed Dec 15, 2020.

[75] Janet Cotterill. Domestic discord, rocky relationships: Semantic prosodies in
representations of marital violence in the O.J. Simpson trial. Discourse & So-
ciety, 12(3):291–312, 2001.

[76] John Creswell. A concise introduction to mixed methods research. SAGE, Thou-
sand Oaks,California, 2015.

[77] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Infor-
mation retrieval in practice. Pearson Education, 2015.

[78] Alexander Cruden. A complete concordance to the Holy Scriptures of the Old
and New Testament. Printed for W. Owen, London, 1794. URL https://
catalog.hathitrust.org/Record/012449047.

[79] Weiwei Cui, Shixia Liu, Li Tan, Conglei Shi, Yangqiu Song, Zekai Gao, Huamin
Qu, and Xin Tong. Textflow: Towards better understanding of evolving topics
in text. IEEE TVCG, 17(12), 2011.

[80] Weiwei Cui, Shixia Liu, Zhuofeng Wu, and Hao Wei. How hierarchical topics
evolve in large text corpora. IEEE TVCG, 20(12), 2014.

212

https://web.archive.org/web/20201105231921/https://support.google.com/chrome/answer/95440
https://web.archive.org/web/20201105231921/https://support.google.com/chrome/answer/95440
https://www.lexisnexis.com/en-us/products/lexis-plus.page
https://www.lexisnexis.com/en-us/products/lexis-plus.page
https://lucene.apache.org/core/7_4_0/index.html
https://lucene.apache.org/core/7_4_0/index.html
https://catalog.hathitrust.org/Record/012449047
https://catalog.hathitrust.org/Record/012449047

[81] Margaret Stieg Dalton and Laurie Charnigo. Historians and their information
sources. College & Research Libraries, 65(5), 2004.

[82] Dipanjan Das and André FT Martins. A survey on automatic text summariza-
tion. Technical report, Carnegie Mellon University, 2007.

[83] Hal Daumé III and Daniel Marcu. Bayesian query-focused summarization. In
ACL, 2006.

[84] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.
Generating typed dependency parses from phrase structure parses. In LREC,
2006.

[85] Luciano Del Corro and Rainer Gemulla. Clausie: clause-based open information
extraction. In WWW, 2013.

[86] Norman K. Denzin and Yvonna S. Lincoln, editors. The Sage handbook of
qualitative research. Sage, 2018.

[87] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL, 2019.

[88] N. Diakopoulos, M. Naaman, and F. Kivran-Swaine. Diamonds in the rough:
Social media visual analytics for journalistic inquiry. In IEEE VAST, 2010.

[89] Anthony Don, Elena Zheleva, Machon Gregory, Sureyya Tarkan, Loretta Auvil,
Tanya Clement, Ben Shneiderman, and Catherine Plaisant. Discovering inter-
esting usage patterns in text collections: Integrating text mining with visual-
ization. In CIKM, 2007.

[90] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv, 2017. URL https://arxiv.org/abs/1702.08608.

[91] Aron Dotan. Masorah. In Michael Berenbaum and Fred Skolnik, editors, En-
cyclopaedia Judaica, volume 13, pages 603–656. Macmillan Reference USA, De-
troit,MI, 2nd edition, 2007.

[92] W. Dou, X. Wang, R. Chang, and W. Ribarsky. Paralleltopics: A probabilistic
approach to exploring document collections. In IEEE VAST, 2011.

[93] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. JMLR, 12(Jul):2121–2159, 2011.

[94] Wendy Duff, Barbara Craig, and Joan Cherry. Historians’ use of archival
sources: Promises and pitfalls of the digital age. The Public Historian, 26
(2):7–22, 2004.

213

https://arxiv.org/abs/1702.08608

[95] Wendy M. Duff and Catherine A. Johnson. Accidentally found on purpose:
Information-seeking behavior of historians in archives. The Library Quarterly,
72(4):472–496, 2002.

[96] Ted Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics, 19:61–74, 1993.

[97] Greg Durrett and Dan Klein. A joint model for entity analysis: Corefer-
ence,typing,and linking. TACL, 2014.

[98] M. Dörk, S. Carpendale, C. Collins, and C. Williamson. Visgets: Coordi-
nated visualizations for web-based information exploration and discovery. IEEE
TVCG, 14(6), 2008.

[99] Maud Ehrmann, Estelle Bunout, and Marten Düring. Historical newspaper user
interfaces: A review. In International Federation of Library Associations World
Library Information Conference, 2019.

[100] Jacob Eisenstein. Introduction to Natural Language Processing. MIT Press,
Cambridge, MA, 2019.

[101] Matan Eyal, Tal Baumel, and Michael Elhadad. Question answering as an
automatic evaluation metric for news article summarization. In NAACL, 2019.

[102] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for
open information extraction. In EMNLP, 2011.

[103] Tobias Falke and Iryna Gurevych. Bringing structure into summaries: Crowd-
sourcing a benchmark corpus of concept maps. In EMNLP, 2017.

[104] Tobias Falke and Iryna Gurevych. Utilizing automatic predicate-argument anal-
ysis for concept map mining. In Proceedings of the 12th International Conference
on Computational Semantics (IWCS), 2017.

[105] Henry Feild, Ryen W. White, and Xin Fu. Supporting orientation during search
result examination. In CHI, 2013.

[106] Katja Filippova and Enrique Alfonseca. Fast k-best sentence compression.
CoRR, abs/1510.08418, 2015.

[107] Katja Filippova and Yasemin Altun. Overcoming the lack of parallel data in
sentence compression. In EMNLP, 2013.

[108] Katja Filippova and Michael Strube. Dependency tree based sentence compres-
sion. In Proceedings of the Fifth International Natural Language Generation
Conference, 2008.

[109] Katja Filippova, Enrique Alfonseca, Carlos A Colmenares, Lukasz Kaiser, and
Oriol Vinyals. Sentence compression by deletion with LSTMs. In EMNLP,
2015.

214

[110] Norbert Finzsch. CONCORD A Program for Concordance Analyses on a Per-
sonal Computer. Historical Social Research / Historische Sozialforschung, 14
(4 (52)):156–158, 1989. Publisher: GESIS - Leibniz-Institute for the Social
Sciences,Center for Historical Social Research.

[111] John Rupert Firth. A Synopsis of Linguistic Theory,1930-1955, chapter Special
volume of the Philological Society,chapter 1, pages 1 – 32. Blackwell, 1957.

[112] Rob Fitzpatrick. The mom test: how to talk to customers and learn if your
business is a good idea when everyone is lying to you. CreateSpace Publishing,
2013.

[113] Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psy-
chological bulletin, 76(5):378, 1971.

[114] Eric Foner. Free soil, free labor, free men: The ideology of the Republican Party
before the Civil War. Oxford University Press, New York, 1995.

[115] Matthew Francis-Landau, Greg Durrett, and Dan Klein. Capturing semantic
similarity for entity linking with convolutional neural networks. In NAACL,
2016.

[116] Katerina Frantzi, Sophia Ananiadou, and Hideki Mima. Automatic recognition
of multi-word terms: The c-value/nc-value method. International Journal on
Digital Libraries, 3(2):115–130, 2000.

[117] Susanne Gahl, Dan Jurafsky, and Douglas Roland. Verb subcategorization
frequencies: American english corpus data, methodological studies, and cross-
corpus comparisons. Behavior Research Methods, Instruments, & Computers,
36(3):432–443, 2004.

[118] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. PPDB:
The paraphrase database. In NAACL, 2013.

[119] Alexandra García-Marrugo. What’s in a name? The representation of illegal
actors in the internal conflict in the Colombian press. Discourse & Society, 24
(4):421–445, 2013. Publisher: Sage Publications,Ltd.

[120] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi,
Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. Al-
lenNLP: A deep semantic natural language processing platform. In Proceedings
of Workshop for NLP Open Source Software (NLP-OSS), 2018.

[121] William Gaver. Science and design: The implications of different forms of
accountability. In Judith S. Olson and Wendy A. Kellogg, editors, Ways of
Knowing in HCI. Springer, New York, NY, 2014.

[122] Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. Bottom-up abstrac-
tive summarization. In EMNLP, 2018.

215

[123] Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel
Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. Part-of-speech tagging for Twitter: Annotation, features,
and experiments. In ACL, 2011.

[124] Lisa Given and Kristie Saumure. Convenience sample. In Lisa Given, editor,
The SAGE Encyclopedia of Qualitative Research Methods. SAGE Publications,
Inc., Thousand Oaks, California, 2008.

[125] Natalie Glance, Matthew Hurst, Kamal Nigam, Matthew Siegler, Robert Stock-
ton, and Takashi Tomokiyo. Deriving marketing intelligence from online dis-
cussion. In KDD, 2005.

[126] Carsten Görg, Zhicheng Liu, and John Stasko. Reflections on the evolution of
the Jigsaw visual analytics system. Information Visualization, 2013.

[127] John D. Gould and Clayton Lewis. Designing for usability: Key principles and
what designers think. Commun. ACM, 28(3):300–311, 1985.

[128] Shawn Graham, Scott Weingart, and Ian Milligan. Getting started with topic
modeling and mallet. https://programminghistorian.org/en/lessons/
topic-modeling-and-mallet, 2012. Accessed: 2021-06-02.

[129] Lisa Green. African American English: A linguistic introduction. Cambridge
University Press, Cambridge,U.K. New York, 2002.

[130] Spence Green, Jeffrey Heer, and Christopher D. Manning. Natural language
translation at the intersection of AI and HCI: Old questions being answered
with both AI and HCI. Queue, 13(6):30–42, 2015.

[131] Abbie Griffin and John R. Hauser. The voice of the customer. Marketing
science, 12(1):1–27, 1993.

[132] Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A dataset of 1.3 million
summaries with diverse extractive strategies. In NAACL, 2018.

[133] LLC Gurobi Optimization. Gurobi optimizer reference manual (v8), 2018.

[134] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel
Bowman, and Noah A. Smith. Annotation artifacts in natural language infer-
ence data. In NAACL, 2018.

[135] Aria Haghighi and Lucy Vanderwende. Exploring content models for multi-
document summarization. In NAACL, 2009.

[136] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word em-
beddings reveal statistical laws of semantic change. In ACL, 2016.

216

https://programminghistorian.org/en/lessons/topic-modeling-and-mallet
https://programminghistorian.org/en/lessons/topic-modeling-and-mallet

[137] Bassam Hammo, Sane Yagi, Omaima Ismail, and Mohammad AbuShariah. Ex-
ploring and exploiting a historical corpus for arabic. Language Resources and
Evaluation, 50(4):839–861, 2016.

[138] Abram Handler and Brendan O’Connor. Rookie: A unique approach for ex-
ploring news archives. In Workshop on Data Science + Journalism at KDD,
2017.

[139] Abram Handler and Brendan O’Connor. Relational summarization for corpus
analysis. In NAACL, 2018.

[140] Abram Handler and Brendan O’Connor. Query-focused sentence compression
in linear time. In EMNLP, 2019.

[141] Abram Handler, Su Lin Blodgett, and Brendan T. O’Connor. Visualizing tex-
tual models with in-text and word-as-pixel highlighting. ICML Workshop on
Human Interpretability in Machine Learning, 2016.

[142] Abram Handler, Matthew Denny, Hanna Wallach, and Brendan O’Connor. Bag
of what? Simple noun phrase extraction for text analysis. In Proceedings of the
First Workshop on NLP and Computational Social Science, 2016.

[143] Abram Handler, Brian Dillon, and Brendan T. O’Connor. Human acceptability
judgements for extractive sentence compression. ArXiv, 2019. URL https:
//arxiv.org/pdf/1902.00489.

[144] Abram Handler, Premkumar Ganeshkumar, Brendan O’Connor, and Mohamed
AlTantawy. Summarizing relationships for interactive concept map browsers.
In Proceedings of the 2nd Workshop on New Frontiers in Summarization, 2019.

[145] Lauren A. Hannah and Hanna Wallach. Summarizing topics: From word lists
to phrases. In NIPS Workshop on Modern Machine Learning and Natural Lan-
guage Processing, 2014.

[146] Zellig S. Harris. Distributional Structure. WORD, 10(2-3):146–162, 1954.

[147] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: Visualizing
thematic changes in large document collections. IEEE TVCG, 8(1):9–20, Jan
2002.

[148] Kenneth Heafield. KenLM: Faster and smaller language model queries. In
EMNLP: Sixth Workshop on Statistical Machine Translation, 2011.

[149] Marti A Hearst. Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the 14th conference on Computational linguistics-Volume 2,
1992.

[150] Marti A. Hearst. Tilebars: Visualization of term distribution information in
full text information access. In CHI, 1995.

217

https://arxiv.org/pdf/1902.00489
https://arxiv.org/pdf/1902.00489

[151] Marti A. Hearst. Search user interfaces. Cambridge University Press, 2009.

[152] Jeffrey Heer. Agency plus automation: Designing artificial intelligence into
interactive systems. Proceedings of the National Academy of Sciences, 116(6),
2019.

[153] Jeffrey Heer and Ben Shneiderman. Interactive dynamics for visual analysis.
Commun. ACM, 55(4):45–54, 2012.

[154] Michael Heilman, Aoife Cahill, Nitin Madnani, Melissa Lopez, Matthew Mul-
holland, and Joel Tetreault. Predicting grammaticality on an ordinal scale. In
ACL, 2014.

[155] Edward S. Herman and Noam Chomsky. Manufacturing consent : the political
economy of the mass media. Pantheon Books, New York, NY, 1988.

[156] Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read
and comprehend. In NIPS, 2015.

[157] David Leon Higdon. The concordance: Mere index or needful census? Text,
15:51–68, 2003.

[158] Tim Hitchcock, Robert Shoemaker, Clive Emsley, Sharon Howard, and Jamie
McLaughlin. The Old Bailey proceedings online, 1674-1913, 2012. URL https:
//www.oldbaileyonline.org.

[159] Harry Hochheiser and Ben Shneiderman. Dynamic query tools for time series
data sets: Timebox widgets for interactive exploration. Information Visualiza-
tion, 3(1):1–18, 2004.

[160] O. Hoeber and Xue Dong Yang. The visual exploration of web search results
using hotmap. In Tenth International Conference on Information Visualisation
(IV’06), 2006.

[161] Jennifer Hoewe and Geri Alumit Zeldes. Overturning anti-miscegenation laws:
News media coverage of the lovings’ legal case against the state of virginia.
Journal of Black Studies, 43(4):427–443, 2012.

[162] Enamul Hoque and Giuseppe Carenini. Interactive topic modeling for exploring
asynchronous online conversations: Design and evaluation of ConVisIT. TiiS,
6(1), 2016.

[163] Eric Horvitz. Principles of mixed-initiative user interfaces. In CHI, 1999.

[164] Eduard Hovy, Teruko Mitamura, Felisa Verdejo, Jun Araki, and Andrew
Philpot. Events are not simple: Identity,non-identity,and quasi-identity. In
Workshop on Events: Definition, Detection, Coreference, and Representation,
2013.

218

https://www.oldbaileyonline.org
https://www.oldbaileyonline.org

[165] Yuening Hu, Jordan Boyd-Graber, and Brianna Satinoff. Interactive topic mod-
eling. In ACL, 2011.

[166] Rodney Huddleston and Geoffrey K. Pullum. The Cambridge Grammar of the
English Language. Cambridge University Press, 2002.

[167] Mans Hulden. Foma: a finite-state compiler and library. In Proceedings of the
Demonstrations Session at EACL, 2009.

[168] Daniel H H Ingalls. Design principles behind smalltalk. Byte, 1981. URL https:
//archive.org/details/byte-magazine-1981-08/page/n299/mode/1up.

[169] E. Isaacs, K. Damico, S. Ahern, E. Bart, and M. Singhal. Footprints: A visual
search tool that supports discovery and coverage tracking. IEEE TVCG, 20
(12):1793–1802, 2014.

[170] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. Real life, real users,
and real needs: a study and analysis of user queries on the web. Information
Processing and Management, 36:207–227, 2000.

[171] Mahmood Jasim, Pooya Khaloo, Somin Wadhwa, Amy X. Zhang, Ali Sarvghad,
and Narges Mahyar. Communityclick: Towards improving inclusivity in town
halls. In CSCW, 2020.

[172] Colman Jerman O.P. Hugh of st. cher. Dominicana, 44(4),
1959. URL https://web.archive.org/web/20200824160615/https:
//www.dominicanajournal.org/wp-content/files/old-journal-archive/
vol44/no4/dominicanav44n4hughstcher.pdf.

[173] Robin Jia and Percy Liang. Adversarial examples for evaluating reading com-
prehension systems. In EMNLP, 2017.

[174] Jialun Aaron Jiang, Kandrea Wade, Casey Fiesler, and Jed R. Brubaker. Sup-
porting Serendipity: Opportunities and Challenges for Human-AI Collaboration
in Qualitative Analysis. CSCW, 5(1), 2021.

[175] Hongyan Jing and Kathleen R McKeown. Cut and paste based text summa-
rization. In NAACL, 2000.

[176] Hongyan Jing, Regina Barzilay, Kathleen McKeown, and Michael Elhadad.
Summarization evaluation methods: Experiments and analysis. In AAAI Spring
Symposium, 1998.

[177] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu. Exploring the limits of language modeling. arXiv, 2016. URL https:
//arxiv.org/pdf/1602.02410.pdf.

[178] John S. Justeson and Slava M. Katz. Technical terminology: Some linguis-
tic properties and an algorithm for identification in text. Natural Language
Engineering, 1(01):9–27, 1995.

219

https://archive.org/details/byte-magazine-1981-08/page/n299/mode/1up
https://archive.org/details/byte-magazine-1981-08/page/n299/mode/1up
https://web.archive.org/web/20200824160615/https://www.dominicanajournal.org/wp-content/files/old-journal-archive/vol44/no4/dominicanav44n4hughstcher.pdf
https://web.archive.org/web/20200824160615/https://www.dominicanajournal.org/wp-content/files/old-journal-archive/vol44/no4/dominicanav44n4hughstcher.pdf
https://web.archive.org/web/20200824160615/https://www.dominicanajournal.org/wp-content/files/old-journal-archive/vol44/no4/dominicanav44n4hughstcher.pdf
https://arxiv.org/pdf/1602.02410.pdf
https://arxiv.org/pdf/1602.02410.pdf

[179] Katharina Kann, Sascha Rothe, and Katja Filippova. Sentence-Level Fluency
Evaluation: References Help,But Can Be Spared! In CoNNL, 2018.

[180] Chris Kedzie, Kathleen McKeown, and Fernando Diaz. Predicting salient up-
dates for disaster summarization. In ACL, 2015.

[181] Katherine Keith, Su Lin Blodgett, and Brendan O’Connor. Monte Carlo syntax
marginals for exploring and using dependency parses. In NAACL, 2018.

[182] Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura, and Manabu
Okumura. Controlling output length in neural encoder-decoders. In EMNLP,
2016.

[183] Adam Kilgarriff and Iztok Kosem. Corpus tools for lexicographers. In Sylviane
Granger and Magali Paquot, editors, Electronic Lexicography, pages 31–56. Ox-
ford University Press, 2012.

[184] Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert Bossy, Ngan Nguyen,
and Jun’ichi Tsujii. Overview of BioNLP shared task 2011. In Proceedings of
BioNLP Shared Task 2011 Workshop, 2011.

[185] Su Nam Kim, Timothy Baldwin, and Min-Yen Kan. Evaluating n-gram based
evaluation metrics for automatic keyphrase extraction. In COLING, 2010.

[186] Svetlana Kiritchenko and Saif Mohammad. Best-worst scaling more reliable
than rating scales: A case study on sentiment intensity annotation. In ACL,
2017.

[187] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies with
mechanical turk. In CHI, 2008.

[188] Sigrid Klerke, Yoav Goldberg, and Anders Søgaard. Improving sentence com-
pression by learning to predict gaze. In NAACL, 2016.

[189] Kevin Knight and Daniel Marcu. Statistics-based summarization - step one:
Sentence compression. In AAAI, 2000.

[190] Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-based trans-
lation. In NAACL, 2003.

[191] Wojciech Kryscinski, Nitish Shirish Keskar, Bryan McCann, Caiming Xiong,
and Richard Socher. Neural text summarization: A critical evaluation. In
EMNLP, 2019.

[192] Steven Langsford, Amy Perfors, Andrew T Hendrickson, Lauren A Kennedy,
and Danielle J Navarro. Quantifying sentence acceptability measures: Reliabil-
ity, bias, and variability. Glossa: A journal of general linguistics, 3(1), 2018.

[193] Richard K Larson. On the syntax of disjunction scope. Natural Language &
Linguistic Theory, 3(2):217–264, 1985.

220

[194] Jey Han Lau, Alexander Clark, and Shalom Lappin. Unsupervised prediction
of acceptability judgements. In ACL, 2015.

[195] Jey Han Lau, Alexander Clark, and Shalom Lappin. Grammatical-
ity,acceptability,and probability: A probabilistic view of linguistic knowledge.
Cognitive Science, 41(5):1202–1241, 2017.

[196] Anthony Laurence. Antconc: A learner and classroom friendly, multi-platform
corpus analysis toolkit. Proceedings of IWLeL: An Interactive Workshop on
Language E-learning 2004, 2004.

[197] LexisNexis Legal. Key words in context view on lexis, 2020. URL https:
//www.youtube.com/watch?v=-DXXRSpAZBA.

[198] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In NIPS, 2014.

[199] Mark Liberman. "A briefe and a compendious table", 2004. URL
https://web.archive.org/web/20201222233836/http://itre.cis.upenn.
edu/~myl/languagelog/archives/000537.html. "Accessed December
22,2020".

[200] Chin-Yew Lin and Eduard Hovy. The automated acquisition of topic signatures
for text summarization. In Proceedings of the 18th conference on Computational
linguistics-Volume 1, 2000.

[201] Hui Lin and Jeff Bilmes. Multi-document summarization via budgeted maxi-
mization of submodular functions. In NAACL, 2010.

[202] Hui Lin and Jeff Bilmes. A class of submodular functions for document sum-
marization. In ACL, 2011.

[203] Shixia Liu, Michelle X. Zhou, Shimei Pan, Yangqiu Song, Weihong Qian, Weijia
Cai, and Xiaoxiao Lian. Tiara: Interactive, topic-based visual text summariza-
tion and analysis. ACM TIST., 3(2), 2012.

[204] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa:
A robustly optimized BERT pretraining approach. arXiv, 2019. URL https:
//arxiv.org/pdf/1907.11692.pdf.

[205] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency on exploratory
visual analysis. IEEE TVCG, 2014.

[206] J.J. Louviere. Best-worst scaling: A model for the largest difference judgments.
Technical report, University of Alberta, 1991.

[207] H. P. Luhn. The automatic creation of literature abstracts. IBM Journal of
Research and Development, 2(2):159–165, 1958.

221

https://www.youtube.com/watch?v=-DXXRSpAZBA
https://www.youtube.com/watch?v=-DXXRSpAZBA
https://web.archive.org/web/20201222233836/http://itre.cis.upenn.edu/~myl/languagelog/archives/000537.html
https://web.archive.org/web/20201222233836/http://itre.cis.upenn.edu/~myl/languagelog/archives/000537.html
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf

[208] H. P. Luhn. Key word-in-context index for technical literature (kwic index).
American Documentation, 11(4):288–295, 1960.

[209] Jack Lule. Myth and terror on the editorial page: The New York Times re-
sponds to september 11, 2001. Journalism & Mass Communication Quarterly,
79(2):275–293, 2002.

[210] Bill MacCartney and Christopher D Manning. An extended model of natural
logic. In Proceedings of the eighth international conference on computational
semantics, 2009.

[211] Neil A Macmillan and C Douglas Creelman. Response bias: Characteristics of
detection theory, threshold theory, and "nonparametric" indexes. Psychological
Bulletin, 107(3):401, 1990.

[212] Neil A. Macmillan and C. Douglas Creelman. Detection theory: A user’s guide.
Psychology Press, 2004.

[213] Trent MacNamara. Why “race suicide”? Cultural factors in U.S. fertility decline,
1903–1908. The Journal of Interdisciplinary History, 44(4):475–508, 2014.

[214] Jonathan Mallinson, Rico Sennrich, and Mirella Lapata. Sentence Compression
for Arbitrary Languages via Multilingual Pivoting. In EMNLP, 2018.

[215] Christopher Manning and Carson Hinrich Schütze. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge,Mass, 1999.

[216] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to Information Retrieval. Cambridge University Press, USA, 2008.

[217] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language pro-
cessing toolkit. In ACL: System Demonstrations, 2014.

[218] Megh Marathe and Kentaro Toyama. Semi-automated coding for qualitative
research: A user-centered inquiry and initial prototypes. In CHI, 2018.

[219] Gary Marchionini. Exploratory search: From finding to understanding. Com-
mun. ACM, 49(4):41–46, 2006.

[220] Adam Marcus, Michael S. Bernstein, Osama Badar, David R. Karger, Samuel
Madden, and Robert C. Miller. Twitinfo: Aggregating and visualizing mi-
croblogs for event exploration. In CHI, 2011.

[221] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

[222] Eduard Mark. In Re Alger Hiss: A final verdict from the archives of the KGB.
Journal of Cold War Studies, 11(3):26–67, 2009.

222

[223] Howard Markel, Harvey B. Lipman, J. Alexander Navarro, Alexandra Sloan,
Joseph R. Michalsen, Alexandra Minna Stern, and Martin S. Cetron. Non-
pharmaceutical Interventions Implemented by U.S. Cities During the 1918-1919
Influenza Pandemic. JAMA, 298(6):644–654, 2007.

[224] André FT Martins and Noah A Smith. Summarization with a joint model for
sentence extraction and compression. In Proceedings of the Workshop on Integer
Linear Programming for Natural Langauge Processing, 2009.

[225] Michael Matthews, Pancho Tolchinsky, Roi Blanco, Jordi Atserias, Peter Mika,
and Hugo Zaragoza. Searching through time in the New York Times. In HCIR,
2010.

[226] Roger C. Mayer, James H. Davis, and F. David Schoorman. An integrative
model of organizational trust. The Academy of Management Review, 20(3):
709–734, 1995.

[227] Thomas R. McCoy and Tal Linzen. Non-entailed subsequences as a challenge
for natural language inference. In SCIL, 2019.

[228] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. Reliability and inter-
rater reliability in qualitative research: Norms and guidelines for CSCW and
HCI practice. CSCW, 2019.

[229] Ryan McDonald. A study of global inference algorithms in multi-document
summarization. In ECIR, 2007.

[230] Tony McEnery and Costas Gabrielatos. English Corpus Linguistics. In The
Handbook of English Linguistics. John Wiley & Sons, Ltd, 2006.

[231] Tony McEnery and Andrew Hardie. Corpus Linguistics: Method,Theory and
Practice. Cambridge Textbooks in Linguistics. Cambridge University Press,
2011.

[232] Kathleen McKeown and Dragomir R. Radev. Generating summaries of multiple
news articles. In SIGIR, 1995.

[233] Kathleen R. McKeown, Regina Barzilay, David Evans, Vasileios Hatzivas-
siloglou, Judith L. Klavans, Ani Nenkova, Carl Sable, Barry Schiffman, and
Sergey Sigelman. Tracking and summarizing news on a daily basis with
Columbia’s newsblaster. In HLT, 2002.

[234] Michael Meyer, Renate Buber, and Anahid Aghamanoukjan. In search of legit-
imacy: Managerialism and legitimation in civil society organizations. Voluntas:
International Journal of Voluntary and Nonprofit Organizations, 24(1):167–193,
2013.

223

[235] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres,
Matthew K. Gray, The Google Books Team, Joseph P. Pickett, Dale Holberg,
Dan Clancy, Peter Norvig, Jon Orwant, Steven Pinker, Martin A. Nowak, and
Erez Lieberman Aiden. Quantitative analysis of culture using millions of digi-
tized books. Science, 2010.

[236] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. Efficient es-
timation of word representations in vector space, 2013. URL http://arxiv.
org/abs/1301.3781.

[237] Matthew B. Miles, A. M. Huberman, and Johnny Saldaña. Qualitative data
analysis: A methods sourcebook. SAGE, 3 edition, 2014.

[238] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38
(11):39–41, 1995.

[239] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant supervision
for relation extraction without labeled data. In ACL, 2009.

[240] John W. Mohr and Petko Bogdanov. Topic models: What they are and why
they matter. Poetics, 41:545–569, 2013.

[241] Burt L Monroe, Michael P Colaresi, and Kevin M Quinn. Fightin’ words:
Lexical feature selection and evaluation for identifying the content of political
conflict. Political Analysis, 16(4):372–403, 2008.

[242] Aditi Muralidharan and Marti Hearst. Wordseer: Exploring language use in
literary text. In Fifth Workshop on Human-Computer Interaction and Infor-
mation Retrieval, 2011.

[243] Aditi Muralidharan, Marti A. Hearst, and Christopher Fan. WordSeer: A
Knowledge Synthesis Environment for Textual Data. In CIKM, 2013.

[244] Dhiraj Murthy. Digital ethnography: An examination of the use of new tech-
nologies for social research. Sociology, 42(5):837–855, 2008.

[245] Courtney Napoles, Benjamin Van Durme, and Chris Callison-Burch. Evaluating
sentence compression: Pitfalls and suggested remedies. In Proceedings of the
Workshop on Monolingual Text-To-Text Generation, 2011.

[246] Roberto Navigli. Word sense disambiguation: A survey. ACM Computing
Surveys, 41(2), 2009.

[247] Ani Nenkova and Kathleen McKeown. Automatic summarization. Foundations
and Trends in Information Retrieval, 5(2–3):103–233, 2011.

[248] Ani Nenkova and Kathleen McKeown. A survey of text summarization tech-
niques. In Mining text data, pages 43–76. Springer, 2012.

224

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

[249] Ani Nenkova and Lucy Vanderwende. The impact of frequency on summariza-
tion. Technical report, Microsoft Research, 2005.

[250] Graham Neubig. Neural machine translation and sequence-to-sequence models:
A tutorial. ArXiv, 2017. URL https://arxiv.org/abs/1703.01619.

[251] New York Times contributors. The New York Times search page, 2020. URL
https://www.nytimes.com/search. Accessed June 12, 2020.

[252] Roger Newson. Parameters behind “nonparametric” statistics: Kendall’s tau,
Somers’ D and median differences. The Stata Journal, 2(1):45–64, 2002.

[253] Newspaper.com contributors. newspapers.com, 2020. URL https://www.
newspapers.com. [Online; accessed 15-June-2020].

[254] Jeffrey Nichols, Jalal Mahmud, and Clemens Drews. Summarizing sporting
events using twitter. In IUI, 2012.

[255] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco,CA,USA, 1993.

[256] Jakob Nielsen. 10 usability heuristics for user interface design.
https://web.archive.org/web/20210106204738/https://www.nngroup.com/articles/ten-
usability-heuristics/, 1994. Accessed: 2021-01-06.

[257] Janni Nielsen, Torkil Clemmensen, and Carsten Yssing. Getting access to
what goes on in people’s heads? Reflections on the think-aloud technique.
In NordiCHI, 2002.

[258] Joakim Nivre. An efficient algorithm for projective dependency parsing. In
International Conference on Parsing Technologies, 2003.

[259] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg,
Jan Hajic, Christopher D. Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. Universal depen-
dencies v1: A multilingual treebank collection. In LREC, 2016.

[260] Seyednaser Nourashrafeddin, Ehsan Sherkat, Rosane Minghim, and Evange-
los E. Milios. A visual approach for interactive keyterm-based clustering. TiiS,
8(1), 2018.

[261] Michael P. Oakes. Concordancing, collocations and dictionaries. In Tony
McEnery and Andrew Wilson, editors, Statistics for Corpus Linguistics, pages
149–198. Edinburgh University Press, 1998.

[262] Brendan O’Connor. MiTextExplorer: Linked brushing and mutual information
for exploratory text data analysis. In Proceedings of the Workshop on Interactive
Language Learning,Visualization,and Interfaces, 2014.

225

https://arxiv.org/abs/1703.01619
https://www.nytimes.com/search
https://www.newspapers.com
https://www.newspapers.com

[263] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in
log analysis. Commun. ACM, 55(2), 2012.

[264] Bryan Orme. Maxdiff analysis: Simple counting, individual-level logit, and hb.
Technical report, Sawtooth Software, 2009.

[265] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan
Schneider, and Noah A. Smith. Improved part-of-speech tagging for online
conversational text with word clusters. In NAACL, 2013.

[266] Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. En-
glish Gigaword fifth edition, 2011.

[267] S. M. Parrish and James Allan Painter. Editor’s Preface, pages v–xxviii. Cornell
University Press, 1963.

[268] Ramakanth Pasunuru, Asli Celikyilmaz, Michel Galley, Chenyan Xiong, Yizhe
Zhang, Mohit Bansal, and Jianfeng Gao. Data augmentation for abstractive
query-focused multi-document summarization. In AAAI, 2021.

[269] Dev Patnaik and Robert Becker. Needfinding: The why and how of uncovering
people’s needs. Design Management Journal, 10(2):37–43, 1999.

[270] Walter Pauk and Ross J. Q. Owens. How to study in college. Wadsworth,
Boston, MA, 10th ed edition, 2011.

[271] Ellie Pavlick and Chris Callison-Burch. So-called non-subsective adjectives. In
*SEM, 2016.

[272] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-
learn: Machine learning in python. JMLR, 12:2825–2830, 2011.

[273] Fabian Pedregosa-Izquierdo. Feature extraction and supervised learning on
fMRI: From practice to theory. PhD thesis, Université Pierre et Marie Curie -
Paris VI, 2015.

[274] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech
tagset. In LREC, 2012.

[275] Peter R. Petrucci and Michael Head. Hurricane katrina’s lexical storm: The use
of “refugee as” a label for american citizens. Australasian Journal of American
Studies, 25(2):23–39, 2006.

[276] Paul Pierson. Politics in time: History, institutions, and social analysis. Prince-
ton University Press, Princeton, New Jersey, 2004.

226

[277] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proceedings
of international conference on intelligence analysis, volume 5, 2005.

[278] Matt Post and David Vilar. Fast lexically constrained decoding with dynamic
beam allocation for neural machine translation. In NAACL, 2018.

[279] Proquest LLC. Proquest, 2020. URL https://search.proquest.com/. Ac-
cessed June 12, 2020.

[280] George Psathas. Problems and Prospects in the Use of a Computer System of
Content Analysis. The Sociological Quarterly, 7(4):449–468, 1966. Publisher:
Midwest Sociological Society.

[281] James Pustejovsky. The syntax of event structure. Cognition, 41(1):47–81,
1991.

[282] Lara Putnam. The Transnational and the Text-Searchable: Digitized Sources
and the Shadows They Cast. The American Historical Review, 121(2):377–402,
2016.

[283] William Revelle. psych: Procedures for Psychological, Psychometric, and Per-
sonality Research. Northwestern University, Evanston, Illinois, 2020. R package
version 2.0.9.

[284] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Re-
lation extraction with matrix factorization and universal schemas. In NAACL,
2013.

[285] Emmanuel Roche and Yves Schabes. Finite-State Language Processing. MIT
Press, 1997.

[286] Geoffrey Rockwell, Stéfan G. Sinclair, Stan Ruecker, and Peter Organisciak.
Ubiquitous text analysis. paj: The Journal of the Initiative for Digital Human-
ities, Media, and Culture, 2(1), 2010.

[287] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A Primer in BERTology:
What We Know About How BERT Works. TACL, 8, 2021.

[288] Stephen Roller, Douwe Kiela, and Maximilian Nickel. Hearst patterns revisited:
Automatic hypernym detection from large text corpora. In ACL, 2018.

[289] R.H. Rouse and M.A. Rouse. The Verbal Concordance to the Scriptures.
Archivum Fratrum Praedicatorum, XLIV (44):5–30, 1974. URL http://
catalog.hathitrust.org/Record/000598885.

[290] Jeffrey Rubin, Dana Chisnell, and Jared Spool. Handbook of usability testing:
how to plan, design and conduct effective tests. JohnWiley & Sons, Indianapolis,
Indiana, 2nd edition, 2008.

227

https://search.proquest.com/
http://catalog.hathitrust.org/Record/000598885
http://catalog.hathitrust.org/Record/000598885

[291] Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention
model for abstractive sentence summarization. In EMNLP, 2015.

[292] Evan Sandhaus. The New York Times Annotated Corpus. Linguistic Data
Consortium, LDC2008T19, 2008.

[293] Cory R. Schaffhausen. Large-Scale Needfinding Methods,Quality Metrics,and
Need Prioritization in User-Centered Design. PhD thesis, 2015.

[294] Benjamin M Schmidt. Words alone: Dismantling topic models in the humani-
ties. Journal of Digital Humanities, 2(1):49–65, 2012.

[295] Philip A Schrodt, Deborah J Gerner, Rajaa Abu-Jabr, ömür Yilmaz, and
Erin M Simpson. Analyzing the dynamics of international mediation processes
in the middle east and balkans. In Annual Meeting of the American Political
Science Association, 2001.

[296] Sebastian Schuster and Christopher D. Manning. Enhanced English Universal
Dependencies: An improved representation for natural language understanding
tasks. In LREC, 2016.

[297] Carson Schütze. The empirical base of linguistics: Grammaticality judgments
and linguistic methodology. University of Chicago Press, Chicago, Il, 1996.

[298] Carson T Schütze and Jon Sprouse. Judgment data. In Robert J. Podesva and
Devyani Sharma, editors, Research methods in linguistics. Cambridge University
Press, 2014.

[299] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI.
Commun. ACM, 63(12):54–63, 2020.

[300] Cecilia Di Sciascio, Vedran Sabol, and Eduardo Veas. Supporting exploratory
search with a visual user-driven approach. TiiS, 7(4), 2017.

[301] Wolfgang Seber. Argus Homericus sive Index vocabulorum in omnia Homeri
poemata. By Wolfgangus Seberus. Early European Books: Printed sources to
1700. Prost. apud J. Janssonium, 1651.

[302] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology: Reflec-
tions from the trenches and the stacks. IEEE TVCG, 18(12), 2012.

[303] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. Trains of thought: Generating
information maps. In WWW, 2012.

[304] Dafna Shahaf, Jaewon Yang, Caroline Suen, Jeff Jacobs, Heidi Wang, and Jure
Leskovec. Information cartography: Creating zoomable, large-scale maps of
information. In KDD, 2013.

228

[305] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge
base: Issues,techniques,and solutions. IEEE Transactions on Knowledge and
Data Engineering, 27(2), 2015.

[306] Ehsan Sherkat, Evangelos E. Milios, and Rosane Minghim. A visual analytics
approach for interactive document clustering. TiiS, 10(1), 2019.

[307] Jeannie N. Shinozuka. Deadly perils: Japanese beetles and the pestilential
immigrant, 1920s-1930s. American Quarterly, 65(4):831–852, 2013.

[308] Ben Shneiderman. The eyes have it: A task by data type taxonomy for infor-
mation visualizations. In Proceedings of the 1996 IEEE Symposium on Visual
Languages, 1996.

[309] Ben Shneiderman. Claiming success,charting the future: Micro-HCI and macro-
HCI. Interactions, 18(5):10–11, 2011.

[310] Jaspreet Singh, Wolfgang Nejdl, and Avishek Anand. Expedition: A time-aware
exploratory search system designed for scholars. In SIGIR, 2016.

[311] Jaspreet Singh, Wolfgang Nejdl, and Avishek Anand. History by diversity:
Helping historians search news archives. In CHIR, 2016.

[312] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Ng. Cheap and
fast – but is it good? evaluating non-expert annotations for natural language
tasks. In EMNLP, 2008.

[313] Janine Solberg. Googling the archive: Digital tools and the practice of history.
Advances in the History of Rhetoric, 15(1), 2012.

[314] John Sprouse and Carson Schütze. Research Methods in Linguistics, chapter
Judgment Data. Cambridge University Press, Cambridge, UK, 2014.

[315] Jon Sprouse and Diogo Almeida. Design sensitivity and statistical power in
acceptability judgment experiments. Glossa, 2(1):1, 2017.

[316] Gabriel Stanovsky and Ido Dagan. Creating a large benchmark for open infor-
mation extraction. In EMNLP, 2016.

[317] John Stasko, Carsten Görg, and Zhicheng Liu. Jigsaw: Supporting investiga-
tive analysis through interactive visualization. Information Visualization, 7(2):
118–132, 2008.

[318] Adrian Staub, Charles Clifton, and Lyn Frazier. Heavy np shift is the parser’s
last resort: Evidence from eye movements. Journal of memory and language,
54(3):389–406, 2006.

[319] Emilia Stoica, Marti Hearst, and Megan Richardson. Automating creation of
hierarchical faceted metadata structures. In NAACL, 2007.

229

[320] Jonathan Stray. What do Journalists do with Documents? In Computa-
tion+Journalism Symposium, 2016.

[321] Michael Stubbs. Corpus semantics. In Nick Riemer, editor, The Routledge
handbook of semantics. Routledge, New York, NY, 2015.

[322] Hillel Taub Tabib, Micah Shlain, Shoval Sadde, Dan Lahav, Matan Eyal, Yaara
Cohen, and Yoav Goldberg. Interactive extractive search over biomedical cor-
pora. In Proceedings of the 19th SIGBioMed Workshop on Biomedical Language
Processing, 2020.

[323] Jenifer Tidwell. A pattern language for human-computer interface design,
1999. URL https://web.archive.org/web/20201212151556/http://www.
mit.edu/~jtidwell/common_ground.html. [Online; accessed 16-Jan-2021].

[324] Jenifer Tidwell, Charles Brewer, and Aynne Valencia. Designing Interfaces.
O’Reilly Media, Inc, 3rd edition, 2020.

[325] Anastasios Tombros and Mark Sanderson. Advantages of query biased sum-
maries in information retrieval. In SIGIR, 1998.

[326] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In
NAACL, 2003.

[327] Edward Tufte. Beautiful Evidence. Graphics Press, Cheshire, Conn, 2006.

[328] John Tukey. Exploratory data analysis. Pearson, 1977.

[329] Daniel Tunkelang. Faceted search. Synthesis lectures on information concepts,
retrieval, and services, 1(1):1–80, 2009.

[330] Ted Underwood. Theorizing Research Practices We Forgot to Theorize Twenty
Years Ago. Representations, 127(1):64–72, 2014.

[331] David Vadas and James R. Curran. Parsing noun phrases in the Penn Treebank.
Computational Linguistics, 37(4), 2011.

[332] Stef van den Elzen and Jarke J. van Wijk. Small multiples, large singles: A
new approach for visual data exploration. Computer Graphics Forum, 32(3):
191–200, 2013.

[333] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
JMLR, 9(86):2579–2605, 2008.

[334] Koen van Turnhout, Arthur Bennis, Sabine Craenmehr, Robert Holwerda, Mar-
jolein Jacobs, Ralph Niels, Lambert Zaad, Stijn Hoppenbrouwers, Dick Lenior,
and René Bakker. Design patterns for mixed-method research in HCI. In
NordiCHI, 2014.

230

https://web.archive.org/web/20201212151556/http://www.mit.edu/~jtidwell/common_ground.html
https://web.archive.org/web/20201212151556/http://www.mit.edu/~jtidwell/common_ground.html

[335] Fernanda B. Viégas, Scott Golder, and Judith Donath. Visualizing email con-
tent: Portraying relationships from conversational histories. In CHI, 2006.

[336] Nikos Voskarides, Edgar Meij, Manos Tsagkias, Maarten de Rijke, and Wouter
Weerkamp. Learning to explain entity relationships in knowledge graphs. In
ACL, 2015.

[337] Nir Vulkan. An economist’s perspective on probability matching. Journal of
economic surveys, 14(1):101–118, 2000.

[338] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier
benchmark for general-purpose language understanding systems. In NeurIPS,
2019.

[339] Liangguo Wang, Jing Jiang, Hai Leong Chieu, Chen Hui Ong, Dandan Song,
and Lejian Liao. Can syntax help? Improving an LSTM-based sentence com-
pression model for new domains. In ACL, 2017.

[340] Michelle Q. Wang Baldonado, Allison Woodruff, and Allan Kuchinsky. Guide-
lines for using multiple views in information visualization. In AVI, 2000.

[341] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network
acceptability judgments. TACL, 7:625–641, 2019.

[342] Ryen W. White and Resa A. Roth. Exploratory Search: Beyond the Query-
Response Paradigm. Morgan and Claypool Publishers, 2009.

[343] Ryen W. White, Gary Marchionini, and Gheorghe Muresan. Evaluating ex-
ploratory search systems: Introduction to special topic issue of information
processing and management. Information Processing and Management, 44(2),
2008. Evaluating Exploratory Search Systems Digital Libraries in the Context
of Users’ Broader Activities.

[344] Hadley Wickham. The tidy tools manifesto. https://web.archive.org/
web/20190110110838/https://github.com/tidyverse/tidyverse/blob/
master/vignettes/manifesto.Rmd, 2018.

[345] Wikipedia contributors. Clio, 2021. URL https://en.wikipedia.org/wiki/
Clio. [Online; accessed 20-Jan-2021].

[346] GarryWills. Untitled Review of Concordances to Homer. The American Journal
of Philology, 85(4):445–447, 1964. Publisher: Johns Hopkins University Press.

[347] Wei Xu, Chris Callison-Burch, and Courtney Napoles. Problems in current text
simplification research: New data can help. TACL, 2015.

[348] J. Yang, D. Luo, and Y. Liu. Newdle: Interactive visual exploration of large
online news collections. IEEE Computer Graphics and Applications, 30(5):32–
41, 2010.

231

https://web.archive.org/web/20190110110838/https://github.com/tidyverse/tidyverse/blob/master/vignettes/manifesto.Rmd
https://web.archive.org/web/20190110110838/https://github.com/tidyverse/tidyverse/blob/master/vignettes/manifesto.Rmd
https://web.archive.org/web/20190110110838/https://github.com/tidyverse/tidyverse/blob/master/vignettes/manifesto.Rmd
https://en.wikipedia.org/wiki/Clio
https://en.wikipedia.org/wiki/Clio

[349] David Yanofsky. If you’re using an Android phone, Google
may be tracking every move you make, 2018. URL https:
//web.archive.org/web/20210203232323/https://qz.com/1183559/
if-youre-using-an-android-phone-google-may-be-tracking-every-move-you-make/.

[350] Dani Yogatama, Lingpeng Kong, and Noah A. Smith. Bayesian optimization
of text representations. In EMNLP, 2015.

[351] Polle T. Zellweger, Bay-Wei Chang, and Jock D. Mackinlay. Fluid links for
informed and incremental link transitions. In Hypertext, 1998.

[352] Amy X. Zhang and Justin Cranshaw. Making sense of group chat through
collaborative tagging and summarization. CSCW, 2018.

[353] Sheng Zhang, Rachel Rudinger, and Benjamin Van Durme. An Evaluation of
PredPatt and Open IE via Stage 1 Semantic Role Labeling. In The Proceed-
ings of the 12th International Conference on Computational Semantics (IWCS),
2017.

[354] Elena Zheleva. Vox media dataset. In KDD DS + J Workshop, 2017.

[355] Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. A monolingual tree-
based translation model for sentence simplification. In COLING, 2010.

[356] Jens O. Zinn. The Proliferation of ‘at risk’ in The Times: A Corpus Approach
to Historical Social Change,1785-2009. Historical Social Research, 43(2 (164)),
2018. Publisher: GESIS - Leibniz Institute for the Social Sciences.

[357] George K. Zipf. Human Behavior and the Principle of Least Effort. Addison-
Wesley, 1949.

232

https://web.archive.org/web/20210203232323/https://qz.com/1183559/if-youre-using-an-android-phone-google-may-be-tracking-every-move-you-make/
https://web.archive.org/web/20210203232323/https://qz.com/1183559/if-youre-using-an-android-phone-google-may-be-tracking-every-move-you-make/
https://web.archive.org/web/20210203232323/https://qz.com/1183559/if-youre-using-an-android-phone-google-may-be-tracking-every-move-you-make/

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	The concordance
	Uses of the concordance

	Introducing lexical corpus analysis
	Exploratory and query-focused lexical corpus analysis

	Research questions in lexical corpus analysis
	How to represent the lexicon (Part I)
	How to show lexical items in context (Part II)
	How to design lexical systems for users (Part III)

	Related work
	Evaluation criteria
	Summary of contributions and results
	Exploratory contributions
	Query-focused contributions

	Part I: How to represent the lexicon
	Noun phrase extraction
	Introduction
	Background: Baseline extraction methods
	n-gram methods
	Parsing methods
	Shallow parsing methods

	Our proposed NPFST method
	FullNP Grammar
	RewriteFST Matching Strategy

	Evaluation of NPFST compared to baselines
	Yield and Recall
	Computational efficiency
	Interpretability

	Conclusion
	Appendix
	FullNP Grammar

	Part II: How to show lexical items in context
	Relationship summarization
	Introduction
	Defining relationship summarization
	Tasks: candidate set generation and summary construction

	Related work
	An approach to the candidate set generation task
	Candidate generation using headline-based supervision
	Evaluating headline-based candidate set generation
	Creating a corpus
	A yield evaluation
	An evaluation with human acceptability judgments

	An approach to the summary construction task
	Introducing ConceptMap browsers
	Annotated summary construction for ConceptMaps
	Annotation: Additional details
	Modeling annotated data
	Model evaluation

	A discussion and analysis of the summary construction task
	Conclusion

	Text simplification (clause deletion)
	Introduction
	Related work
	Compression via subtree deletion
	Human acceptability judgements for sentence compression
	Methodology: measuring well-formedness
	Data collection prompt
	Dataset details
	Measuring inter-annotator agreement

	Intrinsic task: Modeling single operation compressions
	Model features
	Model evaluation

	Extrinsic task: Modeling multi-operation compressions
	Defining multi-operation acceptability scores
	Evaluating multi-operation acceptability scores
	Exploring many compressions of one sentence

	Conclusion and future work
	Appendix
	Crowdsourcing details
	Per-dependency deletion endorsements
	Experimental details

	Text simplification (vertex addition)
	Introduction
	Related work
	Compression via vertex addition
	Formal description

	Evaluation
	Constrained compression experiment
	Models
	ILP
	Vertex Addition

	Metrics: F1, Latency and SLOR
	Comparisons: Ablated & Random

	Future work: Vertex Addition in practice
	Conclusion
	Appendix
	Neural network tuning and optimization
	Reimplementation of Filippova and Altun
	Implementation of SLOR
	Latency evaluation
	Compression ratios

	Part III: How to design lexical systems for specific user groups
	Rookie
	Introduction
	The Rookie system
	Linked views in the Rookie system
	Lexical view: Subjects Summary
	Text view: Snippet Summary
	Summary implementation: server side
	Summary implementation: client side

	Temporal view: Interactive time series

	Evaluation
	In-person group evaluation
	Task completion evaluation
	Historical sensemaking task
	Experiment design
	Results and analysis

	Discussion
	Practical systems should handle NLP failures with grace
	Text visualization should allow drill down to actual words
	NPs, not entities (or topics)
	Speed, correctness and interpretability are not optional

	Conclusion and future work

	ClioQuery
	Introduction
	Related work
	Overview design patterns
	Word clustering
	Textual summary
	Time series plot

	Search design patterns
	Keyword document search (baseline)
	Multi-document snippet

	Current practices, user needs and design requirements
	Observing and analyzing user needs
	Observing needs from existing literature
	Observing needs from interviews and feedback on prototypes
	Analyzing observations of user needs

	Needfinding results and design requirements
	R1: A system should show an overview of change over time
	R2: A system should help users comprehensively review mentions
	R3: A system should present as much context as possible
	R4: A system should be as neutral as possible

	System
	High-level system description
	Overview first: a Time Series View (R1)
	A Document Feed for comprehensive search (R2)
	A linked Document Viewer for necessary context (R3, R4)
	Color-coded history tracking for systematic review (R2)
	Filter instead of rank, to avoid confounds (R4)
	Sentence simplification to help summarize a query
	Overview of sentence simplification in ClioQuery
	Query-focused clause deletion, and character windowing
	Relationship span extraction
	Choosing among possible sentence shortening methods

	Expert interview study procedure
	Recruitment, participants and corpora
	Data collection
	Thematic coding

	Expert interview study results
	ClioQuery helps with historical sensemaking
	ClioQuery offers overviews and context
	Comprehensive review has high costs
	Context is crucial, so some are wary of summarization
	Tradeoffs between neutral review and limited time
	Access, integrity and integration in current practices

	Field study
	Procedure
	ClioQuery helps experts investigate by skimming

	Discussion
	New features and directions for text analysis
	User feedback on summarization has implications for NLP
	Supporting comprehensive and unbiased analysis

	Limitations and future work
	Conclusion

	Part IV: Conclusion
	Conclusion, limitations and future work
	Future work towards representing the lexicon
	Future work towards showing lexical items in context
	Future work towards user-facing lexical systems
	Needfinding from text at scale
	A hypothetical case study in needfinding from text

	Final remarks: conclusions from user-facing NLP

	Bibliography

